ALPHAVIRUSES: MOLECULAR BIOLOGY AND PRACTICAL APPLICATIONS
Main Article Content
Authors
M. Voikov
National Center for Biotechnology, 13/1, Valikhanov str., Astana, 010000, Kazakhstan
A. Baltabekova
National Center for Biotechnology, 13/1, Valikhanov str., Astana, 010000, Kazakhstan
Ye. Zhienbay
Nazarbayev University, 53, Kabanbai Batyr str, Astana, 010000, Kazakhstan
A. Shustov
Nazarbayev University, 53, Kabanbai Batyr str, Astana, 010000, Kazakhstan
Abstract
Alphaviruses are enveloped viruses with positive sense RNA genomes, which replicate in the cytoplasm and have no DNA stage in their life cycle. They are natural infection agents of wild and domestic animals, and may also cause epidemics in humans who are dead-end hosts. Alphaviruses have small genomes and show active replication accompanied by the synthesis of large amounts of viral proteins. Representatives of this genus are able to infect many vertebrate and invertebrate cells. Since the genomic RNA of alphaviruses is infectious, viral progeny can be obtained by transfecting in vitro synthesized RNAs into cell culture, thus facilitating genetic engineering. Alphaviruses are attractive vectors for the production of recombinant proteins in cultured cells of mammals, birds, and invertebrates due to high levels of protein expression. Model viruses used for the development of alphavirus expression systems include the Sindbis virus, Venezuelan equine encephalomyelitis virus, and Semliki Forest virus. Use of wild-type alphaviruses as vectors is avoided because of their strong cytopathic effect in cell culture. Hence, numerous mutant alphaviral genomes with reduced cytopathic effect have been developed.
Alphavirus vectors induce stronger cellular and humoral immune responses than other viral vectors, and therefore are used for the construction of live vaccines against infectious and non-infectious diseases (i.e. anti-cancer therapeutic vaccines). The wide cell and tissue tropism allows utilization of alphaviruses as agents for gene delivery under in vivo conditions and gene therapy.
Keywords
alphavirus, replication, vector, protein expression, vaccines, cytopathic effect
Article Details
References
Luers A.J., Adams S.D., Smalley J.V., Campanella J.J. A phylogenomic study of the genus Alphavirus employing whole genome comparison. Comp Funct Genomics, 2005, vol. 6, no. 4, pp. 217-227. doi: 10.1002/cfg.478. PMID:18629194.
Vancini R., Hernandez R., Brown D. Alphavirus entry into host cells. Prog Mol Biol Transl Sci., 2015, vol. 129, pp. 33-62. doi: 10.1016/bs.pmbts.2014.10.002. PMID:25595800.
Li L., Jose J., Xiang Y., Kuhn R.J., Rossmann M.G. Structural Changes of Envelope Proteins During Alphavirus Fusion. Nature. 2010, vol. 468, no. 7324, pp. 705-708. doi: 10.1038/nature09546. PMID:21124457.
Jose J., Snyder J.E., Kuhn R.J. A structural and functional perspective of alphavirus replication and assembly. Future Microbiol., 2009, vol. 4, no. 7, pp. 837-856. doi: 10.2217/fmb.09.59. PMID:19722838.
Firth A.E., Wills N.M., Gesteland R.F., Atkins J.F. Stimulation of stop codon readthrough: frequent presence of an extended 3' RNA structural element. Nucleic Acids Res., 2011, vol. 39, no. 15, pp. 6679-6691. doi: 10.1093/nar/gkr224. PMID:21525127.
Malet H., Coutard B., Jamal S., et al. The crystal structures of Chikungunya and Venezuelan equine encephalitis virus nsP3 macro domains define a conserved adenosine binding pocket. J Virol., 2009, vol. 83, no. 13, pp. 6534-6545. doi: 10.1128/JVI.00189-09. PMID:19386706.
Tomar S., Hardy R.W., Smith J.L., Kuhn R.J. Catalytic core of alphavirus nonstructural protein nsP4 possesses terminal adenylyltransferase activity. J Virol., 2006, vol. 80, no. 20, pp. 9962-9969. PMID:17005674.
Frolov I., Akhrymuk M., Akhrymuk I., Atasheva S., Frolova E.I. Early events in alphavirus replication determine the outcome of infection. J Virol., 2012, vol. 86, no. 9, pp. 5055-5066. doi: 10.1128/JVI.07223-11. PMID:22345447.
Shin G., Yost S.A., Miller M.T., Elrod E.J., Grakoui A., Marcotrigiano J. Structural and functional insights into alphavirus polyprotein processing and pathogenesis. Proc Natl Acad Sci USA, 2012, vol. 109, no. 41, pp. 16534-16539. doi: 10.1073/pnas.1210418109. PMID:23010928.
Gorchakov R., Frolova E., Sawicki S., Atasheva S., Sawicki D., Frolov I. A new role for ns polyprotein cleavage in Sindbis virus replication. J Virol., 2008, vol. 82, no. 13, pp. 6218-6231. doi: 10.1128/JVI.02624-07. PMID:18417571.
Tsetsarkin K., Higgs S., McGee C.E., De Lamballerie X., Charrel R.N., Vanlandingham D.L. Infectious clones of Chikungunya virus (La Reunion isolate) for vector competence studies. Vector Borne Zoonotic Dis., 2006, vol. 6, no. 4, pp. 325-337. PMID:17187566.
Vanlandingham D.L., Tsetsarkin K., Hong C., et al. Development and characterization of a double subgenomic chikungunya virus infectious clone to express heterologous genes in Aedes aegypti mosquitoes. Insect Biochem Mol Biol., 2005, vol. 35, no. 10, pp. 1162-1170. PMID:16102421.
Chikkanna-Gowda C.P., McNally S., Sheahan B.J., Fleeton M.N., Atkins G.J. Inhibition of murine K-BALB and CT26 tumour growth using a Semliki Forest virus vector with enhanced expression of IL-18. Oncol Rep., 2006, vol. 16, no. 4, pp. 713-719. PMID:16969484.
Chikkanna-Gowda C.P., Sheahan B.J., Fleeton M.N., Atkins G.J. Regression of mouse tumours and inhibition of metastases following administration of a Semliki Forest virus vector with enhanced expression of IL-12. Gene Ther., 2005, vol. 12, no. 16, pp. 1253-1263. PMID:15944731.
Quetglas J.I., Fioravanti J., Ardaiz N., et al. A Semliki forest virus vector engineered to express IFNalpha induces efficient elimination of established tumors. Gene Ther., 2012, vol. 19, no. 3, pp. 271-278. doi: 10.1038/gt.2011.99. PMID:21734727.
Rodriguez-Madoz J.R., Prieto J., Smerdou C. Semliki forest virus vectors engineered to express higher IL-12 levels induce efficient elimination of murine colon adenocarcinomas. Mol Ther., 2005, vol. 12, no. 1, pp. 153-163. PMID:15963931.
Casales E., Rodriguez-Madoz J.R., Ruiz-Guillen M., et al. Development of a new noncytopathic Semliki Forest virus vector providing high expression levels and stability. Virology, 2008, vol. 376, no. 1, pp. 242-251. doi: 10.1016/j.virol.2008.03.016. PMID:18442838.
Tamm K., Merits A., Sarand I. Mutations in the nuclear localization signal of nsP2 influencing RNA synthesis, protein expression and cytotoxicity of Semliki Forest virus. J Gen Virol., 2008, vol. 89, no. 3, pp. 676-686. doi: 10.1099/vir.0.83320-0. PMID:18272758.
Petrakova O., Volkova E., Gorchakov R., Paessler S., Kinney R.M., Frolov I. Noncytopathic replication of Venezuelan equine encephalitis virus and eastern equine encephalitis virus replicons in Mammalian cells. J Virol., 2005, vol. 79, no. 12, pp. 7597-7608. PMID:15919912.
Casales E., Aranda A., Quetglas J.I., et al. A novel system for the production of high levels of functional human therapeutic proteins in stable cells with a Semliki Forest virus noncytopathic vector. N Biotechnol., 2010, vol. 27, no. 2, pp. 138-148. doi: 10.1016/j.nbt.2010.02.005. PMID:20188220.
Ventoso I., Sanz M.A., Molina S., Berlanga J.J., Carrasco L., Esteban M. Translational resistance of late alphavirus mRNA to eIF2alpha phosphorylation: a strategy to overcome the antiviral effect of protein kinase PKR. Genes Dev., 2006, vol. 20, no. 1, pp. 87-100. PMID:16391235.
Ansorena A.E., Aymerich S.M.S., Blanco P.M.J., Casales Z.E., Garbayo A.E., Molina S.M.C., Smerdou P.C. Viral vectors and methods used in the preparation of GDNF. Patent WO2011064437, 2011.
Ansorena E., Garbayo E., Lanciego J.L., Aymerich M.S., Blanco-Prieto M.J. Production of highly pure human glycosylated GDNF in a mammalian cell line. Int J Pharm., 2010, vol. 385, no. 1-2, pp. 6-11. doi: 10.1016/j.ijpharm.2009.10.015. PMID:19825405.
Garbayo E., Ansorena E., Lanciego J.L., Aymerich M.S., Blanco-Prieto M.J. Purification of bioactive glycosylated recombinant glial cell line-derived neurotrophic factor. Int J Pharm., 2007, vol. 344, no. 1-2, pp. 9-15. PMID:17499462.
Beerli R.R., Bauer M., Buser R.B., et al. Isolation of human monoclonal antibodies by mammalian cell display. Proc Natl Acad Sci USA, 2008, vol. 105, no. 38, pp. 14336-14341. doi: 10.1073/pnas.0805942105.
Quetglas J.I., Ruiz-Guillen M., Aranda A., Casales E., Bezunartea J., Smerdou C. Alphavirus vectors for cancer therapy. Virus Res., 2010, vol. 153, no. 2, pp. 179-196. doi: 10.1016/j.virusres.2010.07.027. PMID:20692305.