DNA EXTRACTION FROM HERBARIUM SPECIMENS OF RHODIOLA ROSEA
Main Article Content
Authors
D.S. Tagimanova
National Center for Biotechnology, 13/5, Kurgalzhyn road, Astana, 010000, Kazakhstan
O.N. Khapilina
National Center for Biotechnology, 13/5, Kurgalzhyn road, Astana, 010000, Kazakhstan
A.A. Amenov
National Center for Biotechnology, 13/5, Kurgalzhyn road, Astana, 010000, Kazakhstan
R.N. Kalendar
National Center for Biotechnology, 13/5, Kurgalzhyn road, Astana, 010000, Kazakhstan
Abstract
High-quality DNA is necessary for molecular genetic studies. It is difficult to extract quality DNA from plant tissues, especially herbarium specimens, since they contain significant amounts of polysaccharides, phenols, and pigments that reduce the efficiency of PCR. An effective method for extracting genomic DNA from herbarium specimens is required. Nucleic acid purification methods can be classified into two general categories: liquid phase and columns containing sorbents.In this paper, wedescribed various methods for extracting DNA from herbarium specimens of Rhodiola rosea. The results showed low efficiency of methods based on the use of chaotropic salts such as guanidin tiotsionata, PVP and β-mercaptoethanol.The use of SDS-extraction buffer reduced the quantitative parameters of the DNA samples. For the extraction of DNA from herbarium material, the most effective protocol was based on acid cetyltrimethylammonium bromide buffer with hot chloroform. The buffer increased the yield of high-quality DNA because it prevented oxidative processes and the formation of DNA chemical components with pigments and polysaccharides. Use of this method resulted in 100% recovery of DNA from all the samples.
Keywords
Rhodiola rosea, cenopopulation, DNA, herbarium, molecular genetic analysis
Article Details
References
Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning. A Laboratory Manual. New York, Cold Spring Harbor Laboratory, 1989, pp. 545.
Rogers S.O., Bendich A.J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol., 1985, vol. 5, pp. 69-76. doi:10.1007/BF00020088.
Chum P.Y., Haimes J.D., Andre C.P., et al. Genotyping of plant and animal samples without prior DNA purification. J Vis Exp., 2012. doi:10.3791/3844.
Guertler P., Eicheldinger A., Muschler P., et al. Automated DNA extraction from pollen in honey. Food Chem., 2014, vol. 149, pp. 302-6. doi:10.1016/j.foodchem.2013.10.129.
Couch J.A., Fritz P.J. Isolation of DNA from plants high in polyphenolics. Plant Molecular Biology Reporter., 1990, vol. 8, pp. 8-12. doi:10.1007/bf02668875.
Ristaino J.B., Groves C.T., Parra G.R. PCR amplification of the Irish potato famine pathogen from historic specimens. Nature, 2001, vol. 411, no. 6838, pp. 695-697. doi:10.1038/35079606.
Soltis P.S., Soltis D.E. Ancient DNA: Prospects and limitations. New Zealand Journal of Botany, 1993, vol. 31, pp. 203-209. doi:10.1080/0028825x.1993.10419497.
Healey A., Furtado A., Cooper T., Henry R.J. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods, 2014, vol. 10, pp. 21. doi:10.1186/1746-4811-10-2.
SDS Extraction Buffer. Cold Spring Harbor Protocols, 2012, vol. 2012, no. 11. pdb.rec072496-pdb.rec072496. doi:10.1101/pdb.rec072496.
Chabi Sika K., Kefela T., Adoukonou-Sagbadja H., et al. A simple and efficient genomic DNA extraction protocol for large scale genetic analyses of plant biological systems. Plant Gene, 2015, vol. 1, pp. 43-45. doi:10.1016/j.plgene.2015.03.001.
Kalendar R. Total DNA isolation protocol, 2016. URL: URL.
Allen G.C., Flores-Vergara M.A., Krasynanski S., et al. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc, 2006, vol. 1, no. 5, pp. 2320-2325. doi:10.1038/nprot.2006.384.
Azmat M.A., Khan I.A., Cheema H.M., et al. Extraction of DNA suitable for PCR applications from mature leaves of Mangifera indica L. J Zhejiang Univ Sci B, 2012, no. 4, pp. 239-243. doi:10.1631/jzus.B1100194.
Doyle J.J., Doyle J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 1987, vol. 19, pp. 11-15. URL.
Doyle J., Doyle J. Isolation of plant DNA from fresh tissue. Focus, 1990, vol. 12, pp. 13-15. URL.
Gardes M., Bruns T.D. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology, 1993, vol. 2, no. 2, pp. 113-118. doi:10.1111/j.1365-294X.1993.tb00005.x.
Hsiao C., Chatterton N.J., Asay K.H., Jensen K.B. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome, 1995, vol. 38, no. 2, pp. 211-223. URL.
Schoch C.L., Seifert K.A., Huhndorf S., et al. Fungal Barcoding C., Fungal Barcoding Consortium Author L. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA, 2012, vol. 109, no. 16, pp. 6241-6246. doi:10.1073/pnas.1117018109.
Vilgalys_lab. Conserved primer sequences for PCR amplification and sequencing from nuclear ribosomal RNA. URL: URL.
Sang T., Crawford D., Stuessy T. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot., 1997, vol. 84, pp. 1120. URL.
Kalendar R., Antonius K., Smýkal P., Schulman A.H. iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theoretical and Applied Genetics, 2010, vol. 121, no. 8, pp. 1419-1430. doi:10.1007/s00122-010-1398-2.
Kalendar R., Schulman A.H. Transposon-based tagging: IRAP, REMAP, and iPBS. Methods in Molecular Biology, vol. 1115, 2014, pp. 233-255. doi:10.1007/978-1-62703-767-9_12.