Main Article Content


M.Y. Omasheva

Institute of Plant Biology and Biotechnology, 45, Timiryazev str., 050040, Almaty, Kazakhstan

A.S. Pozharskiy

Institute of Plant Biology and Biotechnology, 45, Timiryazev str., 050040, Almaty, Kazakhstan

A.D. Maulenbay

Institute of Plant Biology and Biotechnology, 45, Timiryazev str., 050040, Almaty, Kazakhstan

N.A. Ryabushkina

Institute of Plant Biology and Biotechnology, 45, Timiryazev str., 050040, Almaty, Kazakhstan

N.N. Galiakparov

Institute of Plant Biology and Biotechnology, 45, Timiryazev str., 050040, Almaty, Kazakhstan


The Kazakhstan territory belongs to the Middle Asian centre of origin and diversity of apple species. Despite having favourable agro climatic conditions, Kazakhstan represents only 20% of the internal apple market. Modern international requirements for selection and zoning include both phenotypic and genetic characterisation of varieties, which depends on genetic analysis resources. In the present study, molecular-genetic passports for 31 Kazakhstani apple varieties were made for the first time. Samples were collected from five different gardens and analysed using 16 simple sequence repeat (SSR) markers. Established genotypic properties of the varieties (passports) verified information gathered by selectors regarding parentage of the majority of the varieties. The genotyping furthermore allowed for individual discrepancies of samples from certain varieties to be identified. Three samples of the Alexander Aport apple were, for example, genetically identified as hybrids of the Aport variety and an unknown variety. The analysed varieties were tested for the presence of alleles associated with resistance to various aggressive pathogens: apple scab, powdery mildew, and fire blight. Nine markers were used for apple scab, two for fire blight, and five for powdery mildew. The Maksat, Saltanat, and Maximus varieties, which bear the genes of resistance to scab and fire blight, were identified as the most promising varieties for further selection. The Kazakhstani varieties Rashid’s Aport, Bes Zhuldyz, Voshod, Zhana Tan, and Maximus were found to harbour valuable genes for long-term storage, which also makes them an appealing choice for selection.


Malus domestica, apple varieties, genotyping, SSR markers, PCR

Article Details


Gross B.L., Henk A.D., Richards C.M., Fazio G., Volk G.M. Genetic diversity in Malus × domestica (Rosaceae) through time in response to domestication. Am. J. Bot., 2014, vol. 101, no. 10, pp. 1770-1779. doi: 10.3732/ajb.1400297.

Gross B.L., Kellogg E.A., Miller A.J. Speaking Of Food: Connecting Basic And Applied Plant Science. Am. J. Bot, 2014, vol. 101, no. 10, pp. 1597-1600. doi: 10.3732/ajb.1400409.

Gross M. Plant science called up to provide food security. Curr. Biol, 2014, vol. 24, no. 23, pp. 1105-1108. PMID: 25606585.

Bus V.G.M., Rikkerink E.H.A., Caffier V., Durel C.-E., Plummer K.M. Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Annual Review of Phytopathology, 2011, vol. 49, pp. 391-413. doi: 10.1146/annurev-phyto-072910-095339.

Benaouf G., Parisi L. Genetics of host-pathogen relationships between Venturia inaequalis races 6 and 7 and Malus species. Phytopathology, 2000, vol. 90, pp. 236-242. doi: 10.1094/PHYTO.2000.90.3.236.

Khan M.A., Zhao Y., Korban S.S. Molecular mechanisms of pathogenesis and resistance to the bacterial pathogen Erwinia amylovora, causal agent of fire blight disease in Rosaceae (Report). Plant Molecular Biology Reporter, 2012, vol. 30, no. 2, pp. 247(14). PMID: 282941912.

Peil A., Garsia-Libreros T., Richter K. et al. Strong evidence for a fire blight resistance gene of Malus robusta located on linkage group 3. Plant Breed, 2007, vol. 126, pp. 470-475. doi: 10.1111/j.1439-0523.2007.01408.x.

James C.M., Clarke J.B., Evans K.M. Identification of molecular markers linked to the mildew resistance gene Pl-d in apple. Theoretical and Applied Genetics, 2004, vol. 110, pp. 175-181. PMID: 15551035.

Bus V.G.M., Bassett H.C.M., Bowatte D. et al. Genome mapping of an apple scab, a powdery mildew and woolly apple aphid resistance gene from open-pollinated mildew immune selection. Tree genetics and Genomes, 2010, vol. 6, pp. 477-487. doi: 10.1007/s11295-009-0265-2.

Costa F., Stella S., de Weg Van W.E. et al. Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh). Euphytica, 2005, vol. 141, pp. 181-190. doi: 10.1007/s10681-005-6805-4.

Würdig J., Flachowsky H., Höfer M. et al. Phenotypic and genetic analysis of the German Malus Germplasm Collection in terms of type 1 and type 2 red-fleshed apples. Gene, 2014, vol. 544, no. 2, pp. 198-207. doi: 10.1016/j.gene.2014.04.045.

Madenov Je.D. Plodovodstvo i vinogradarstvo [Pomiculture and viticulture] // Doklady Nacional'noj akademii nauk respubliki Kazahstan - Proceedings of the Kazakh Natioanal Academy of Science, 2011, no 3, pp. 74-87.

Faostat: Food and agriculture organization of the United Nations, statistic division // URL: URL.

Master-plan «Plodoovoshhevodstvo» [Master-plan «Pomiculture and obericulture»]. Astana, 2013, 27 p.

Nurmuratuly T., Madenov Je.D., Nurtazina N.Ju. et al. Genofond mestnyh i starodavnih sortov jabloni, grushi, abrikosa i vinograda na juge i jugo-vostoke Kazahstana [The genofond of local and traditional apple, pear, apricot and grapevine cultivars on the South-East Kazakhstan]. Almaty, 2012, 120 p.

Gosudarstvennyj reestr selekcionnyh dostizhenij, dopushhennyh k ispol'zovaniju v Respublike Kazahstan [The state registry of selection results approved for using in Republic of Kazakhstan]. Astana, 2011, 104 p.

Aubakirova K., Omasheva M., Ryabushkina N. et al. Evaluation of five protocols for DNA extraction from leaves of Malus sieversii, Vitis vinifera, and Armeniaca vulgaris. Genet. Mol. Res, 2014, vol.13, no. 1, pp. 1278-1287. PMID: 24634185.

Hokanson S.C. et al. Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor. Appl. Genet, 1998, no. 94, pp. 671-683. doi: 10.1007/s001220050943.

Liebhard R., Gianfranceschi L., Koller B. et al. Development and characterization of 140 new microsatellites in apple (Malus × domestica Borkh.). Molecular Breeding, 2002, vol. 10, no. 4, pp. 217-241. doi: 10.1023/A:1020525906332.

Omasheva M.E., Chekalin S.V., Rjabushkina N.A., Galiakparov N.N. Ocenka molekuljarno-geneticheskogo raznoobrazija populjacij Malus sieversii Dzhungarskogo Alatau i Tarbagataja [Evaluation of the molecular genetic diversity of Malus sieversii populations in the Dzungarian Alatau and Tarbagatai mountains]. Biotehnologija. Teorija i praktika - Biotechnology Theory and Practice, 2015, no. 1, pp. P. 26-34. doi: 10.11134/btp.1.2015.3

Matschiner M., Salzburger W. TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics, 2009, vol. 25, no. 15, pp. 1982-1983.

Genome database for Rosaceae // URL: URL.

R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. ISBN 3-900051-07-0, URL URL.

Afunian M.R. et al. Linkage of Vfa4 in Malus х domestica and Malus floribunda with Vf resistance to the apple scab pathogen Venturia inaequalis. Plant Pathology, 2004, vol. 53, pp. 461-467. doi: 10.1111/j.1365-3059.2004.01047.x.

Bus V.G.M, Laurens F.N.D., and van de Weg W.E. et al. The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740-7A. New Phytol, 2005, vol. 166, no. 3, pp. 1035-1049. doi: 10.1111/j.1469-8137.2005.01395.x.

Tartarini S., Gianfranceschi L., Sansavini S., Gessler C. Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple. Plant Breeding, 1999, vol. 118, pp. 183-186. PMID: 11269357.

Gygax M., Gianfranceschi L., Liebhard R. et al. Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor Appl Genet, 2004, vol. 109, no. 8, pp. 1702-1709. doi: 10.1007/s00122-004-1803-9.

Cheng F.S., Weeden N.F., Brown S.K. et al. Development of a DNA marker for Vm, a gene conferring resistance to apple scab // Genome, 1998, vol. 41, pp. 208-214. doi: 10.1139/g98-020.

Khan M.A., Durel C.-E., Duffy al. Development of molecular markers linked to the ‘Fiesta’ linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection. Genome, 2007, vol. 50, p. 568-577. doi: 10.1139/G07-033.

Gardiner S., Murdoch J., Meech S. et al. Candidate resistance genes from an EST database prove a rich source of markers for major genes conferring resistance to important apple pests and diseases. Acta Hortic, 2003, vol. 622, pp. 141-151. doi: 10.17660/actahortic.2003.622.12.