PGPR Bacteria - Promising Objects to Create BIOFERTILIZERS of Complex Action

Main Article Content

Authors

A.B. Abdykadyrova

National Center for Biotechnology, 13/5, Korgalzhyn road, Nur-Sultan, 010000, Kаzakhstan

R. Aipova

National Center for Biotechnology, 13/5, Korgalzhyn road, Nur-Sultan, 010000, Kаzakhstan

B.O. Raisov

M.Auezov South Kazakhstan state University, 5, Taukekhan avenue, Shymkent, 160012, Kаzakhstan

A.A. Kurmanbaev

National Center for Biotechnology, 13/5, Korgalzhyn road, Nur-Sultan, 010000, Kаzakhstan

Abstract

The review summarizes literature data and the results of the authors own research on the agronomically useful group of soil microorganisms stimulating plant growth (plant-growth-promoting rhizobacteria - PGPR bacteria). PGPRs have great potential for plant growth promoting as they control pest and disease and have been considered important in sustainable agriculture. PGPR includes a promising group of bacteria that live on the surface and inside the roots of agricultural plants. They possess a number of positive properties such as fixation of molecular nitrogen of the atmosphere, decomposition of harmful chemical compounds, synthesis of substances of a hormonal nature, are able to transform difficult phosphorus soil compounds, and also prevent or reduce the growth of phytopathogens due to the ability to synthesize substances with bactericidal and fungicidal effects, as well as competition for ions iron, without which the growth of phytopathogens is difficult. In addition, PGPR bacteria provide plant resistance to adverse environmental factors: heavy metal pollution of the soil, soil salinization, and drought. Under stress caused by heavy metal contamination of the soil, PGPR bacteria enhance plant survival. Data are presented showing the prospects of using these microorganisms in the development of technologies of ecological farming in order to increase plant productivity, biocontrol over the development of plant diseases, reduce the chemical load on the soil, increase its fertility.

Keywords

rhizobacteria, inoculation, phytohormones, growth-stimulating activity, nitrogen fixation, agricultural crops, yield

Article Details

References

Tikhonovich I.A., Provorov N.A. Kooperatsiya rasteniy i mikroorganizmov: novyye podkhody k konstruirovaniyu ekologicheski ustoychivykh agrosistem [Cooperation between plants and microorganisms: new approaches to the design of environmentally sustainable agricultural systems]. Usp. sovr. biol. – Suc. modern biol., 2007. vol. 127, no. 4, pp. 339-357.

Shaposhnikov A.I., Belimov A.A., Kravchenko L.V., Vivanko D.M. Vzaimodeystviye rizosfernykh bakteriy s rasteniyami: Mekhanizmy obrazovaniya i faktory effektivnosti assotsiativnykh simbiozov [Interaction of rhizospheric bacteria with plants: Mechanisms of formation and efficiency factors of associative symbioses]. Sel'skokhozyaystvennaya biologiya – Agricultural biology, 2011, no. 3, pp. 16-22.

Ahemad M. Enhancing phytoremediation of chromiumstressed soils through plant-growth-promoting bacteria. J. Genet. Eng. Biotechnol, 2015, vol. 13, рр. 51-58.

. Kruglov YU.V. Mikrobiologicheskiye aspekty plodorodiya pochvy i problemy ustoychivogo zemledeliya [Microbiological aspects of soil fertility and sustainable agriculture]. Plodorodiye – Fertility, 2006, no. 5, pp. 9-12.

Tak H.I., Ahmad F., Babalola O. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Rev. Environ. Contaminat.Toxicol., 2013, vol. 223, pp. 33-53.

Sytnikov D.M. Biotekhnologiya mikroorganizmov azotfiksatorov i perspektivy primeneniya preparatov na ikh osnove [Biotechnology of nitrogen-fixing microorganisms and prospects for the use of drugs based on them]. Biotekhnologiya – Biotechnology, 2013, no. 4, pp.16-22.

Compant S., Duffy B., Nowak J. et al. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. and Environ. Microbiol. 2005, no. 9, pp. 4951- 4959.

Selivanovskaya S.YU., Latypova V.Z. Mikroorganizmy v krugovorote biogennykh elementov [Microorganisms in the cycle of nutrients]. Kazan': Kazan.un–t, 2014. pp 38.

Suslow T.V., Kloepper J.W., Schroth M.N., Burr T.J. Beneficial bacteria enhance plant growth Rhizobacteria J. Calif. Agric., 1979, vol.33. pp. 15-17.

Volova T.G. Biologicheskiye udobreniya [Biological fertilizers] Biotekhnologiya – Biotechnology, Novosibirsk, Pressord 2016, pp.159.

Golovanov M.T. Rol' tekhnogennykh faktorov v stabilizatsii urozhaya zerna gorokha sortov novogo pokoleniya [The role of technogenic factors in stabilizing the grain crop of peas of new generation varieties]. 2014, no. 1, pp. 3-7.

Eid A.R., Awad M.N., Hamouda H.A.Evaluate effectiveness of bio and mineral fertilization on the growth parameters and marketable cut flowers of Matthiolaincana L.. Amer. J. Agric. Environ., 2009, vol. 5, no. 4, pp. 509-518.

Vandeputte O., Oden S., Mol A., Vereecke D., Goethals K., El Jaziri M., Prinsen E.Biosynthesis of auxinby the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infectplant tissues. Appl. Environ. Microbiol., 2005. vol. 71, pp. 1169-1177.

Gur'yev G.P. Vliyaniye preparatov kluben'kovykh bakteriy i kompleksnogo mikrobnogo udobreniya (KMU) na simbioticheskuyu azotfiksatsiyu i urozhay gorokha [The effect of nodule bacteria and complex microbial fertilizer (CTO) preparations on symbiotic nitrogen fixation and pea crop]. Nauchno-proizvodstvennyy zhurnal «Zernobobovyye i krupyanyye kul'tury» – Scientific-production journal «Legumes and cereals», 2017, no. 1, pp.15-18.

Arkhipova T.N., Veselov S.Y., Melentiev A.I., Martynenko E.V., Kudoyarova G.R. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil, 2005, vol. 272, pp. 201-209.

Yesaulko A.N., Ageyev V.V., Grechishkina YU.I. Effektivnost' rannevesennikh azotnykh podkormok pshenitsy kul'tur v razlichnykh pochvenno-klimaticheskikh usloviyakh [The effectiveness of early-weighted nitrogen fertilizing wheat crops in various soil and climatic conditions]. Severo-Kavkazskomu Federal'nomu Okrugu: 75-ya nauchno-prakticheskaya konferentsiya «Agrarnaya nauka» [North Caucasus Federal District: 75th Scientific and Practical Conference "Agricultural Science"], 2014. pp. 49-52.

Matevosyan, F.S. Vliyaniye kluben'kovykh bakteriy v assotsiatsii s drugimi pochvennymi mikroorganizmami na azotfiksatsiyu rasteniy [The effect of nodule bacteria in association with other soil microorganisms on plant nitrogen fixation]. Biolog.zhurn. Armenii – Biologist. journal of Armenia, 2016, no. 2, pp. 43-47.

Han H.S., Lee K.D. Physiological responses of soybean – inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Res. J. Agr. Biol. Sci., 2005. vol. 1, pp. 216-221.

Yao A.V., Bochow H., Karimov S., Boturov U., Sanginboy S., Sharipov K. Effect of FZB24 Bacillus subtilis as a biofertilizer on cotton yields in field tests. Arch. Phytopathol. Plant Prot., 2006, vol. 39, pp. 1-6.

www.ecologiemicrobiennelyon.fr URL

Kots' S.YA., Morgun V.V., Patyka V.F Biologicheskaya fiksatsiya azota: bobovo–rizobial'nyy simbioz [Biological nitrogen fixation: bean – rhizobial symbiosis]. M.: Logos, 2017, pp.523

Volkohon V.V. Mikrobiolohichni aspekty optymizatsiyi azotnoho udobrennya silsko hospodarskykh kultur [Microbiological aspects of optimization of nitrogen fertilizer in agricultural crops]. Ahrarna nauka – Agricultural science, 2007, pp.143

Tsavkelova Ye.A., Klimova S.YU., Cherdyntsev T.A., Netrusov A.I. Gormony i gormonopodobnyye soyedineniya mikroorganizmov [Hormones and hormone-like compounds of microorganisms]. Prikl. biokhimiya i mikrobiologiya – Applied biochemistry and microbiology. 2006, no. 3, pp. 261-268.

Tsavkelova Ye.A., Klimova S.YU., Cherdyntsev T.A., Netrusov A.I. Gormony i gormonopodobnyye soyedineniya mikroorganizmov [Hormones and hormone-like compounds of microorganisms]. Prikl. biokhimiya i mikrobiologiya – Applied biochemistry and microbiology. 2006, no. 3, pp. 261-268.

Arkhipova T.N., Veselov S.YU., Melent'yev A.I., Martynenko Ye.V. Sravneniye deystviya shtammov bakteriy, razlichayushchikhsya po sposobnosti sintezirovat' tsitokininy, na rost i soderzhaniye tsitokininov v rasteniyakh pshenitsy [Comparison of the effects of bacterial strains that differ in their ability to synthesize cytokinins on the growth and content of cytokinins in plants of bees]. Fiziologiya rasteniy – Plant physiology, 2006, no. 4, pp. 567-74.

Ahemada M., Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University Science, 2014, vol.26, pp.1-20.

Kravchenko L.V., Azarova T.S., Makarova N.M., Tikhonovich I.A. Rol' triptofana v kornevykh ekzometabolitakh dlya fitostimuliruyushchey aktivnosti rizobakteriy [The role of tryptophan in root exometabolites for phytostimulating activity of rhizobacteria]. Mikrobiologiya – Microbiology, 2004, no. 2, pp. 195-198.

Stepanyan, T.U. Ispol'zovaniye kluben'kovykh bakteriy v assotsiatsii s pochvennymi svobodnozhivushchimi bakteriyami dlya inokulyatsii bobovykh rasteniy [The use of nodule bacteria in association with free-living soil bacteria for inoculation of legumes]. Biolog.zhurn. Armenii – Biologist. journal of Armenia, 2016, no. 3. pp. 18-23.

Kravchenko L.V., Makarova N.M., Azarova T.S. i dr. Vydeleniye i fenotipicheskaya kharakteristika roststimuliruyushchikh rizobakteriy (PGPR), sochetayushchikh vysokuyu aktivnost' kolonizatsii korney i ingibirovaniya fitopatogennykh gribov [Isolation and phenotypic characterization of growth-stimulating rhizobacteria (PGPR), combining high colony activity and inhibition of phytopathogenic fungi]. Mikrobiologiya – Microbiology, 2002, no. 4, pp. 521-525.

Vassilev N., Vassileva M., Nikolaeva I. Simultaneous P-solubilizing and biocontrol activity of microorganisms: Potentials and future trends. Appl. Microbiol. and Biotechnol., 2006, vol.71, pp. 137-144.

Patsko Ye.V. Perspektivnost' ispol'zovaniya assotsiatsiy azotfiksiruyushchikh mikroorganizmov dlya povysheniya urozhaynosti rasteniy [The prospects of using the association of nitrogen-fixing microorganisms to increase plant productivity]. Byul. Mosk. obshch.isp. prir., 2014, no. 2, pp. 84-86.

Saraf M., Pandya U., Thakkar A. Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiological research., 2014, vol. 169, pp.18-29.

Tank N, Rajendran N, Patel B, Saraf M. Evaluation and biochemical characterization ofa distinctive pyoverdin from a Pseudomonas isolated from chickpea rhizosphere. Braz J Microbiol, 2012:639-48.

Aeron A, Pandey P, Kumar S, Maheshwari DK. Emerging role of plant growth pro-moting rhizobacteria. In: Maheshwari DK, editor. Bacteria in agrobiology: cropecosystem. Berlin/Heidelberg: Springer Verlag, 2011, pp. 1-26.

Jayaprakashvel M, Mathivanan N. Management of plant diseases by micro-bial metabolites. In: Maheshwari DK, editor. Bacteria in agrobiology: plantnutrient management. Berlin/Heidelberg: Springer-Verlag, 2011, pp. 237-65.

Gur'yev, G.P. K voprosu o simbioticheskoy azotfiksatsii v usloviyakh Orlovskoy oblasti [On the issue of symbiotic nitrogen fixation in the conditions of the Oryol region] Zernobobovyye i krupyanyye kul'tury – Legumes and cereals, 2012, no. 2. pp. 66-71.

Durаn P., Acuсa J.J., Jorquera M.A., Azcуn R., Paredes C., Rengel Z., Mora M.L.. Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumanno-mycesgraminis biocontrol in wheat production. Biol. Fertil.Soils., 2014, vol.50, pp. 983-990.

Choudhury R., Srivastava S. Zinc resistance mechanisms in bacteria. Curr. Sci., 2001, vol. 81, pp. 768-775.

Farag M.A., Zhang H., Ryu C.M. Dynamic chemical communication between plants and bacteria through airborne signals: Induced resistance by bacterial volatiles. J. Chem. Ecol., 2013, vol.39, pp.1007-1018.

Fokina A.I., Domracheva L.I., Shirokikh I.G., Kondakova L.B., Ogorodnikova S.YU. Mikrobnaya detoksikatsiya tyazhelykh metallov [Microbial detoxification of heavy metals]. Teoreticheskaya i prikladnaya ekologiya – Theoretical and Applied Ecology, 2008, no. 1, pp. 4-10.

Pishchik V.N., Vorobyov N.I., Chernyaeva I.I., Timofeeva S.V., Kozhemyakov A.P., Lukin S.M. Experimental and mathematical simulation of plant growth promoting rhizobacteria and plant interaction under cadmium stress. Plant and Soil, 2002, vol. 243, pp. 173-186.

Acuсa J.J., Jorquera M.A., Barra P.J., Crowley D.E., Mora M.L. Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops. Biol. Fertil. Soils, 2013, vol.49, pp. 175-185.

Dodd I.C. Microbial amelioration of crop salinity stress. J. Exp. Bot., 2012, vol. 63, pp. 3415-3428.

Yao L., Wu Z., Zheng Y., Kaleem I., Li C. Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur. J. Soil Biol., 2010, vol. 46, pp. 49-54.

Qurashi A. W., Sabri A.N. Bacterial exopolysaccharide and biofilm formation stimulate chick-pea growth and soil aggregation under salt stress. Braz. J. Microbiol., 2012, vol. 11, pp. 83-91.

Kohler J., Caravaca F., Carrasco L., Roldan A. Contribution of Pseudomonas mendocina and Glomus intraradices to aggregates stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. Soil Use Manage, 2006, vol. 22, pp. 298-304.

Ramadoss D., Lakkineni V. K., Bose P., Ali S., K. Annapurna Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springer Plus, 2013, vol. 2, pp. 1-7.

Vinicius Ide Franzini, Rosario Azcуn, Juan Manuel Ruiz‑Lozano, Ricardo Aroca. Rhizobial symbiosis modifies root hydraulic properties in bean plants under non-stressed and salinity-stressed conditions. Planta, 2019, vol.49, pp. 1207-1215.

Morgun V.V., Kots' S.YA, Kirichenko Ye.V. Roststimuliruyushchiye rizobakterii i ikh prakticheskoye primeneniye [Growth-stimulating rhizobacteria and their practical use]. Fiziologiya i biokhimiya kul'tur rasteniy – Physiology and biochemistry of plant crops, 2009, no.3, pp. 41.