REVIEW: REPROGRAMMING OF CANCER CELLS WITH VARIOUS EMBRYONIC MICROENVIRONMENTS

Main Article Content

Authors

D. Mektepbayeva

National Laboratory Astana, Nazarbayev University, KabanbayBatyr Ave, 53, Astana, 010000, Kazakhstan

D. Janzakova

Nazarbayev University, KabanbayBatyr Ave, 53, Astana, 010000, Kazakhstan

M. Shaimerdenova

National Laboratory Astana, Nazarbayev University, KabanbayBatyr Ave, 53, Astana, 010000, Kazakhstan

O. Karapina

Nazarbayev University Research and Innovation System, KabanbayBatyr Ave, 53, Astana, 010000, Kazakhstan

X. Mu

University of Texas Health Science Center, 3SCR6 #3706 1881 East Road, Houston, TX 77054, USA

A. Kenneth

Alibek Kenneth, Locus Solutions, LLC, 30500 Aurora Rd Ste 180 Solon,OH 44139-2776, USA

D. Akilbekova

National Laboratory Astana, Nazarbayev University, KabanbayBatyr Ave, 53, Astana, 010000, Kazakhstan

Abstract

Recent studies have demonstrated that common factors present in aggressive cancer cells and embryonic progenitors influence cancer aggressiveness. This review will summarize the cancer-related properties of various embryonic microenvironments. The anticancer effects of embryonic microenvironments on various types of cancer cells and tumors are associated with epigenetic alterations and down regulation of tumor-suppressor genes and the Nodal signaling pathway. The ability to reprogram the tumorigenic phenotype of cancer cells depends on the stage and type of embryonic microenvironment, and reprogramming capacity significantly decreases after organogenesis. Understanding the mechanisms underlying the molecular reprogramming of cancer cells in various embryonic models will help identify potential targets for cancer therapy.

Keywords

Cancer, cell reprogramming, epigenetics, embryonic microenvironments, differentiation

Article Details

References

Garraway L.A., Sellers W.R. Lineage dependency and lineage-survival oncogenes in human cancer. Nature Reviews Cancer,2006, vol.6, pp. 593-602. doi:10.1038/nrc1947.

Sell S. Stem cell origin of cancer and differentiation therapy. Critical Reviews in Oncology/Hematology, 2004, vol.51, pp. 1-28. doi: 10.1016/j.critrevonc.2004.04.007.

Hendrix M.J.C., Seftor E.A., Seftor R.E.B., Kasemeier-Kulesa J., Kulesa P.M.,Postovit L. M. Reprogramming metastatic tumour cells with embryonic microenvironments. Nature Reviews Cancer, 2007, vol. 7, pp. 246-255. doi:10.1038/nrc2108.

Topczewska J., Postovit L.M., Margaryan N.V., Sam A., Hess A.R., Wheaton W.W., Nickoloff B.J., Topczewski J., Hendrix M.J.C. Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nature Medicine,2006, vol. 12, pp. 925-932. doi: 10.1038/nm1448.

Hendrix M.J., Seftor E.A., Hess A.R., Seftor R.E. Vasculogenic mimicry and tumor-cell plasticity: lesions from melanoma. Nature Reviews Cancer,2003, vol.3, pp. 411-421. doi: 10.1038/nrc1092.

Pierce G.B., Pantazis C.G., Caldwell J.E., Wells R.S. Specificity of the control of tumor formation by the blastocyst. Cancer Research, 1982, vol.42, pp. 1082-1087.

Scheel C., Weinberg R.A. Cancer stem cells and epithelial-mesenchymal transition: Concepts and molecular links. Seminars in Cancer Biology, 2012, vol.22, no.5-6, pp. 396-403. doi:10.1016/j.semcancer.2012.04.001.

Thiery J.P., Acloque H., Huang R.Y.J., Nieto M.A. Epithelial- mesenchymal transitions in development and disease. Cell, 2009, vol. 139, pp. 871-890. doi: 10.1016/j.cell.2009.11.007.

Mani S.A., Guo W., Liao M.J., Eaton E.N. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008, vol. 133, pp. 704-715. doi: 10.1016/j.cell.2008.03.027.

Singh A., Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 2010, vol. 29, pp. 4741-4751. doi:10.1038/onc.2010.215.

Illmensee K., Mintz B. Normal genetically mosaic mice produced from malignant tetracarcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 1975, vol. 72, no. 9, pp. 3585-3589.

Hochedlinger K., Blelloch R., Brennan C., Yamada Y., Kim M., Chin L., Jaenisch R. Reprogramming of a melanoma genome by nuclear transplantation. Genes and Development, 2004, vol. 18, no.15, pp. 1875-1885. doi: 10.1101/gad.1213504.

Astigiano S.,Damonte P.,Fossati S.,BoniL.,Barbieri O. Fate of embryonal carcinoma cells injected into postimplantation mouse embryos. Differentiation, 2005, vol. 73, no. 9-10, pp. 484-490. doi: 10.1111/j.1432-0436.2005.00043.x.

Díez-Torre A.,Andrade R.,Eguizábal C.,López E.,Arluzea J.,Silió M.,Aréchaga J. Reprogramming of melanoma cells by embryonic microenvironments. The International Journal of Developmental Biology, 2009, vol. 53, no. 8-10, pp.1563-1568. doi: 10.1387/ijdb.093021ad.

Pfeiffer M.J.,Siatkowski M.,Paudel Y.,Balbach S.T.,Baeumer N.,CrosettoN.,DrexlerH.C.,Fuellen G.,Boiani M. Proteomic analysis of mouse oocytes reveals 28 candidate factors of the "reprogrammome".Journal of Proteome Research,2011, vol. 10, no. 5, pp. 2140-2153. doi: 10.1021/pr100706k.

Krause S., Maffini M.V., Soto A.M., Sonnenschein C. The microenvironment determines the breast cancer cells' phenotype: organization of MCF7 cells in 3D cultures. BMC Cancer,2010, vol. 10, pp.263. doi: 10.1186/1471-2407-10-263.

Hansis C., Barreto G., Maltry N., Niehrs C. Nuclear reprogramming of human somatic cells by xenopus egg extract requires BRG1. Current Biology,2004, vol. 14, no. 16, pp. 1475-1480. doi: 10.1016/j.cub.2004.08.031.

AllegrucciC.,RushtonM.D.,Dixon J.E.,SottileV.,Shah M.,KumariR.,Watson S.,AlberioR.,Johnson A.D. Epigenetic reprogramming of breast cancer cells with oocyte extracts. Molecular Cancer,2011, vol. 10, no. 1, pp. 7. doi: 10.1186/1476-4598-10-7.

Bian Y., Alberio R., AllegrucciC.,Campbell K.H., Johnson A.D. Epigenetic marks in somatic chromatin are remodeled to resemble pluripotent nuclei by amphibian oocyte extracts. Epigenetics,2009, vol. 4, no. 3, pp. 194-202. doi: 10.4161/epi.4.3.8787.

Postovit L., MargaryanN., Seftor E., Kirschmann D., Lipavsky A., Wheaton W. Hendrix M. Human Embryonic Stem Cell Microenvironment Suppresses the Tumorigenic Phenotype of Aggressive Cancer Cells. Proceedings of the National Academy of Sciences of the United States of America,2008, vol. 105, no. 11, pp. 4329-4334.

Mu X.,SultankulovB.,Agarwal R.,MahjoubA.,SchottT.,GrecoN.,HuardJ.,Weiss K. Chick embryo extract demethylates tumor suppressor genes in osteosarcoma cells.ClinicalOrthopaedics and Related Research,2014, vol. 472, no. 3, pp.865-873. doi: 10.1007/s11999-013-3104-6.

Dolberg D.S., Bissell M.J. Inability of Rous sarcoma virus to cause sarcomas in the avian embryo. Nature, 1984, vol. 309, no. 5968, pp.552-556. doi:10.1038/309552a0.

Kenny, Paraic A., Mina J. Bissell. Tumor reversion: correction of malignant behavior by microenvironmental cues. International journal of cancer. Journal international du cancer, 2003, vol. 107, no. 5, pp. 688-695.doi: 10.1002/ijc.11491.

Kulesa P.M.,Kasemeier-KulesaJ.C.,Teddy J.M., Margaryan N.V., Seftor E.A., Seftor R.E., Hendrix M.J. Reprogramming metastatic melanoma cells to assume a neural crest cell-like phenotype in an embryonic microenvironment. Proceedings of the National Academy of Sciences of the United States of America, 2006, vol. 103, no. 10, pp.3752-3757. doi: 10.1073/pnas.0506977103.

Ferranti F.,D'AnselmiF.,CarusoM.,Lei V. et al. TCam-2 seminoma cells exposed to egg-derived microenvironment modify their shape, adhesive pattern and migratory behaviour: a molecular and morphometric analysis. PLoS One, 2013, vol. 8, no. 10, pp. e76192. doi: 10.1371/journal.pone.0076192.

Christman S.A., Kong B.W., Landry M.M., Foster D.N. Chicken embryo extract mitigates growth and morphological changes in a spontaneously immortalized chicken embryo fibroblast cell line. The Journal of Poultry Science,2005, vol. 84, no. 9, pp. 1423-1431. doi: 10.1093/ps/84.9.1423.

Lee L.M.J., Seftor E.A., Bonde G., Cornell R.A., Hendrix M.J.C. The fate of human malignant melanoma cells transplanted into zebrafish embryos: Assessment of migration and cell division in the absence of tumor formation. Developmental Dynamics, 2005, vol. 233, pp. 1560-1570. doi: 10.1002/dvdy.20471.

Cucina A., Biava P., D’Anselmi F. et al. Zebrafish embryo proteins induce apoptosis in human colon cancer cells.Apoptosis, 2006, vol. 11, pp. 1617. doi: 10.1007/s10495-006-8895-8894.

Haldi M., Ton C., Seng W.L., McGrath P. Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis, 2006, vol. 9, no. 3, pp. 139-151. doi: 10.1007/s10456-006-9040-2.

Sanz M.A., Martin G., Barragan E. et al. Risk-adapted treatment of acute promyelocytic leukemia: results of the Spanish PETHEMA trials using ATRA and anthracycline-based chemotherapy. Blood, 2001, vol. 98, no. 11, pp. 765a.

Felsher D.W. Cancer revoked: oncogenes as therapeutic targets. Nature Reviews Cancer, 2003, vol. 3, no. 5, pp. 375-380. doi: 10.1038/nrc1070.

Jain M., Arvanitis C., Chu K. et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science, 2002, vol. 297, no. 5578, pp. 102-104. doi: 10.1126/science.1071489.

Wilmut I., Schnieke A.E., McWhir J., Kind A.J., Campbell K.H. Viable offspring derived from fetal and adult mammalian cells. Nature,1997, vol. 385, pp. 810-813. doi:10.1038/385810a0.

Wakayama T., Perry A.C., Zuccotti M., Johnson K.R., Yanagimachi R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 1998, vol. 394, pp. 369-374. doi: 10.1038/28615.

Na Y.R., Seok S.H., Kim D.J., Han J.H., Kim T.H., Jung H., and Park J.H. Zebrafish embryo extracts promote sphere-forming abilities of human melanoma cell line. Cancer Science, 2009, vol. 100, no. 8, pp. 1429-1433. doi: 10.1111/j.1349-7006.2009.01218.x.

Biava P.M., Bonsignorio D. Cancer and Cell Differentiation: A Model to Explain Malignancy. Journal of Tumor Marker Oncology, 2002, vol. 17, no. 3.

Wang Z., Dao R., Bao L. et al. Epigenetic reprogramming of human lung cancer cells with the extract of bovine parthenogenetic oocytes. Journal of Cellular and Molecular Medicine, 2014, vol. 18, no. 9, pp.1807-1815. doi: 10.1111/jcmm.12306.

Yoo C.B., Jones P.A. Epigenetic therapy of cancer: past, present and future. Nature Reviews Drug Discovery, 2006, vol. 5, no. 1, pp. 37-50.

Costa F.F., Seftor E.A., Bischof J.M. et al. Epigenetically reprogramming metastatic tumor cells with an embryonic microenvironment. Epigenomics, 2009, vol. 1, no.2, pp. 387-398. doi: 10.2217/epi.09.25.

Wang X.F., Wang H.S., Zhang F. et al. Nodal promotes the generation of M2-like macrophages and downregulates the expression of IL-12. Immunomodulation, 2014, vol. 44,pp. 173-183. doi: 10.1002/eji.201343535.