Biologically Active Substances of Fungus Aspergillus Niger
Main Article Content
Authors
A.B. Zhursinali
National Center for Biotechnology, 13/5, Korgalzhyn road, Nur-Sultan, 010000, Kazakhstan
A.A. Kurmanbaev
National Center for Biotechnology, 13/5, Korgalzhyn road, Nur-Sultan, 010000, Kazakhstan
Abstract
The filamentous fungus Aspergillus niger is frequently used for industrial production of fermentative products such as enzymes, proteins and biochemicals. In contrast to what most people might think, citric acid is not or not anymore isolated from citrus fruits, but is industrially produced by the filamentous fungus Aspergillus niger. In 1917, a food chemist named James Currie made a promising discovery: any strain of the filamentous fungus Aspergillus niger would produce high concentrations of citric acid when grown in sugar medium. This tricarboxylic acid, which we now know is an intermediate of the Krebs cycle, had previously been extracted from citrus fruits for applications in food and beverage production. Two years after Currie’s discovery, industrial-level production using Aspergillus niger began, the biochemical fermentation industry started to flourish, and industrial biotechnology was born. Aspergillus niger additionally producing a diverse range of proteins, enzymes and secondary metabolites. In this review, we presented materials on more than 100 years of use of Aspergillus niger in biotechnological production of biologically active substances and environmental protection.
Keywords
Aspergillus niger, citric acid, chitin, lipase, xylanase, alpha-amylase, tensyuic acid
Article Details
References
Cairns T.C., Nai C., Meyer V. How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal Biology and Biotechnology. 2018, vol. 5, no.13. pp. 1-14.
Citric acid market size, share and trends analysis report by form (liquid, powder), by application, by region, competitive landscape, and segment forecasts, 2018 – 2025. Available at: URL (accessed February 2018)
Cairns T.C., Feuerstein C., Zheng X., Zheng P., Sun J., Meyer V. A quantitative image analysis pipeline for the characterization of filamentous fungal morphologies as a tool to uncover targets for morphology engineering: a case study using aplD in Aspergillus niger. Biotechnology for biofuels, 2019, vol. 12, no. 149. pp. 1147-1150.
Matovich-Purich I., Pecarski D., Jugovich Z., Jovichich D., Dordevich D., Maskovich P. Comparative study of some biochemical parameters of the fungi Mucor plumbeus, Aspergillus niger and Trichoderma harzianum. Bulgarian chemical communications, 2017, vol. 49, no. 2, pp. 390-398.
Gong W., Cheng Zh., Zhang H., Liu L., Gao P., Wang W. Draft genome sequence of Aspergillus niger strain an76. Genome announcements, 2016, vol. 4, no. 1, pp. 1-2.
Cairns T.C., Nai C., MeyerV. How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal Biology and Biotechnology, 2018, vol. 5, no.13, pp. 1-14.
Kubasov K. K., Berstenev C. B., Volkov D. V., Zhambakin K. Zh. Citric acid. Food industry, 2015, vol. 125, no. 3, pp. 121-153.
Sazanov K. V. Organicheskie kisloty gribov I ih ekologofiziologicheskoe znachenie. Dokt, Diss [Organic acids of fungi and their ecological and physiological significance. Doct. Diss.]. Saint-Petersburg, 2014. 159 p.
Jang J. Y., Choi Y. H., Shin T. S., Kim T. H., Shin K. S., Park H. W., Kim Y. H., Kim H., Choi G. J., Chang K. S., Cha B., Kim I. S., Man A. J., Kim J. С., Biological Control of meloidogyne incognita by Aspergillus niger F22 producing oxalic acid. Plos one, 2016, vol. 11, no. 6, pp. 1-15.
Mu Q., Yue C. T., Hu M., Tian Y. Thermostability improvement of the glucose oxidase from Aspergillus niger for efficient gluconic acid production via computational design. International journal of biological macromolecules, 2019, vol. 139, pp.1060-1068.
Ramachandran S., Nair S., Larroche C., Pandey A. Gluconic Acid. Current developments in biotechnology and bioengineering, 2017, vol. 9, no. 1, pp. 577-599.
Canete-Rodríguez A. M., Santos-Duenas I. M., Jienez-Hornero J. E., Ehrenreich A. L. Gluconic acid: Properties, production methods and applications - an excellent opportunity for agro-industrial by-products and waste bio-valorization. Process biochemistry, 2016, vol. 51, no. 12, pp. 1891-1903.
Geyer M., Onyancha F. M., Nicol W., Brink H. G. Malic acid production by Aspergillus oryzae: : the role of CaCO3. Chemical Engineering Transactions, 2018, vol. 70, pp. 1801-1806.
Iyyappana J., Bharathirajaa B., Baskarb G., Jayamuthunagaic J., Barathkumara S., Anna R. Malic acid production by chemically induced Aspergillus niger MTCC 281 mutant from crude glycerol. Bioresource technology, 2018. vol. 251, pp. 264-267.
Oscar L. D., Elise O., Alexandra B., Bruno B., Pierre V., Jean-Claude S., Eric R., Craig B. F., Laurence L., Anne L. Release of phenolic acids from sunflower and rapeseed meals using different carboxylic esters hydrolases from Aspergillus niger. Industrial crops and products, 2019, vol. 139, pp. 111-579
Hossain A. H., Li A., Brickwedde A., Wilms L., Caspers M., Overkamp K., Punt P. J. Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger. Microbial Cell Factories, 2016, vol. 15, no. 130, pp. 2-15.
Xu Y., Zheng Z., Xu Q., Yong Q., Ouyang J. Efficient conversion of inulin to inulooligosaccharides through endoinulinase from Aspergillus niger. Journal of Agricultural and Food chemistry, 2016, vol. 64, no. 12, pp.782-790.
Straat L. Itaconic acid production in Aspergillus niger: PhD thesis. Netherland, 2018. 67 p.
Steiger M. G., Rassingerab A., Diethard M., Michael S. Engineering of the citrate exporter protein enables high citric acid production in Aspergillus niger. Metabolic engineering, 2018, vol. 52, pp. 224-231.
Show P. L., Oladele K. O., Siew Q. Y., Zakry A. A., Lan J. Ch., Ling T. Ch. Overview of citric acid production from Aspergillus niger. Frontiers in life science, 2015, vol. 8, pp. 271-283.
Dewi R., Nur R. M. Antifungal activity of chitosan on Aspergillus spp. International journal of bioengineering and biotechnology, 2018, vol. 2, no. 4, pp. 24-30.
Klishanecc E., Lugin V., Litvyak V., Trocckaya T. Hitin-glukanovyi kompleks: poluchenie i svoistva [Chitin-glucan complex: preparation and properties]. Nauka I innovaci [Science and Innovation], 2016, vol. 163, no. 9, pp. 62-68.
Princeva A. A., Sharova N. IU., Vybornova T. V. Issledovanie invertaznoi aktivnosti pri izmeneni parametrov processe fermentaci saharozomineralnoi sredy I gidrolizata krahmala mikromicetom Aspergillus niger [Study of invertase activity when changing the parameters of the fermentation process of the sucrose-mineral medium and starch hydrolysate with Aspergillus niger micromycete]. Pishevye sistemy [Food system], 2018, vol. 1, no. 1, pp. 19-23.
Aguilar C.N., Gutierrez-Sanchez G. Review: Sources, Properties, Applications and Potential uses of Tannin Acyl Hydrolase. Food Science and Technology International. 2001, vol. 7, no. 5, pp. 373-382.
Qiao H., Zhang F., Guan W., Zuo J., Feng D. Optimisation of combi‐lipases from Aspergillus niger for the synergistic and efficient hydrolysis of soybean oil. Animal science journal, 2017, vol. 88, pp. 772-780.
Santos E. A., Lima A. S., Santana C. F., Soares L. C. Lipase from Aspergillus niger obtained from mangaba residue fermentation: biochemical characterization of free and immobilized enzymes on a sol-gel matrix. Acta scientiarum technology, 2017, vol. 39, no. 1, pp. 1-8.
Huang Y., Chen Ch., Huang Ch., Ting-Yung Huang T., Wua T., Cheng Y., Koe T., Lin Ch., Liu J., Guob R. Improving the specific activity of β-mannanase from Aspergillus niger BK01 by structure-based rational design. Biochimica et biophysica acta, 2014, vol. 1844, pp. 663–669.
Uday Sh. P., Bandyopadhyay T. K., Goswami S., Bhunia B. Optimization of physical and morphological regime for improved cellulase free xylanase production by fed batch fermentation using Aspergillus niger (KP874102.1) and its application in bio-bleaching. Bioengineered, 2016, vol. 8, pp. 137-146.
Uday Sh. P., Bandyopadhyay T. K., Bhunia B., Mondal A., Tiwari O., Majumdar R. Isolation, screening and characterization of a novel extracellular xylanase from Aspergillus niger (KP874102.1) and its application in orange peel hydrolysis. International journal of biological macromolecules, 2017, vol. 105, no. 1, pp. 401-409.
Reginatto C., Rossi C., Gamba B., Santos M., Meneghel L., Silveira M. M., Malvessi E. Pectinase production by Aspergillus niger LB-02-SF is influenced by the culture medium composition and the addition of the enzyme inducer after biomass growth. Process biochemistry, 2017, vol. 58, pp. 1-8.
Ahmed I. A., Zia M. A., Hussain M. A., Akram Z., Naveed M. T., Nowrouzi A. Bioprocessing of citrus waste peel for induced pectinase production by Aspergillus niger; its purification and characterization. Journal of radiation research and applied sciences, 2019, vol. 2, pp. 148-154
Ahmed F. A., Ndigwe E. V., Morakinyo S. D., Racheal O. O. Extraction, purification and characterization of protease from Aspergillus niger isolated from yam peels. International journal of nutrition and food sciences, 2015, vol. 4, pp. 125-131.
Enujiugha M. A. Extraction and purification of protease from Aspergillus niger isolation. International journal of nutrition and food sciences, 2018, vol. 4, pp. 125-131.
Dabhi U., Rona R., Kumar D. Immobilization and characterization of an alkaline porotease from Aspergillus niger. International journal of multidisciplinary and current research, 2017, vol. 5, pp. 925-929.
Smeshko T., Lobanko A., Shtyrov A., Mihalenko E., Belskaya A. Sensory dlya detekci gliukozy v krovi bolnyh diabetom Sensors for detecting glucose in the blood of diabetic patients]. Nauka i Innovaci [Science and Innovation], 2018, vol. 179, no. 1, pp. 73-78.
Sun H., Pang M. Improvement of glucoamylase production for raw-starch digestion in Aspergillus niger F-01 by maltose stearic acid ester. Biotechnology letters, 2017, vol. 39, pp. 561–566.
Verwoerd T. C., Paridon P. A., Ooyen A., Lent J., Hoekema A., Pen J. Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Gene regulation and molecular genetics. 1995, vol. 109, pp. 1199-1206.
Structural formula of inulin. Available at: URL (accessed 17 July 2006).
Xu Y., Zheng Z., Xu Q., Yong Q., Ouyang J. Efficient Conversion of Inulin to Inulooligosaccharides through Endoinulinase from Aspergillus niger. Agricultural and Food chemistry, 2016, vol. 64, pp. 2612-2618.
Couto S. R., Luis J., Herrera T. Industrial and biotechnological applications of laccases. Biotechnology advances, 2006, vol. 24, pp. 500-513.
Dumitresku R. S., Mot A. S. Lakkazy: stroenie fermenynogo kompleksa, kataliziruiushego odnoelektronnuiu reakciu [Laccases: structure of an enzyme complex that catalyzes a single-electron reaction]. Biohimia [Biochemistry], 2013, vol. 78, no. 2, pp. 167-184.
Mazotto A. M., Couri S., Damaso M. C., Vermelho A. B. Degradation of feather waste by Aspergillus niger keratinases: Comparison of submerged and solid-state fermentation. International biodeterioration andbiodegradation, 2013, vol. 85. pp. 189-195.
Kubasov K. K., Berstenev C. B., Volkov D. V., Zhambakin K. Zh. Citric acid. Food industry, 2015, vol. 125, no. 3, pp. 121-153.
Nielsen K. F., Mogensen J. M., Johansen M., Larsen T. O., Frisvad J. C. Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Analytical and Bioanalytical Chemistry, 2009, vol. 395, pp. 1225–1242.
Han X., Jiang H., Xu J., Zhang J., Li F. Dynamic Fumonisin B2 Production by Aspergillus niger. Toxins, 2017, vol. 9, pp. 2-11.
Hasegawa Y., Fukuda T., Hagimori K., Tomoda H., Omura S. Tensyuic Acids, New Antibiotics Produced by Aspergillus niger FKI-2342. Chemical and pharmaceutical bulletin, 2007, vol. 55, pp. 1338-1341.
Horeh N. B., Mousavi S. M., Shojaosadati S. A. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger. Journal of power sources, 2016, vol. 320, pp. 257-266.
Korostelyova A. B. Sposob ochistki stochnyh vod ot fenolov [Method for treating waste water from phenols], Izvestia, 2011, no. 25, pp. 585-589.
Garcı I. C., Pena P.R., Venceslada J. L. B., Martın A. M., Santos M. A., Gomez E. R. Removal of phenol compounds from olive mill wastewater using Phanerochaete chrysosporium, Aspergillus niger, Aspergillus terreus and Geotrichum candidum // Process biochemistry. – 2000. – Vol. 35. – P. 751–758.
Academic Dictionaries and Encyclopedias. Available at: URL (accessed 2000).