Main Article Content


D. Tagimanova

National Center for Biotechnology, Kоrgalzhyn hwy, 13/5Astana, Kazakhstan

O. Khapilina

National Center for Biotechnology, Kоrgalzhyn hwy, 13/5Astana, Kazakhstan

A. Amenov

National Center for Biotechnology, Kоrgalzhyn hwy, 13/5Astana, Kazakhstan

A. Danilova

Altai Botanical Garden, Ridder, Kazakhstan

R. Kalendar

National Center for Biotechnology, Kоrgalzhyn hwy, 13/5Astana, Kazakhstan


Roseroot (Rhodiola rosea L.) is a widely used medicinal herb in Russia, Scandinavia, and China. We used intron polymorphism markers for several genes families with high levels of polymorphism to investigate 32 accessions. In addition, we collected plants from 2 separate natural populations in the Altai region (West Altai and South Altai) of Kazakhstan. Universal PCR primer pairs were based on sequenced genes of related Rhodiolaspecies. The intron polymorphism markers were used to assess genetic diversityusing the GenAlex 6.5 program. The discriminatory potential of the selected markers was sufficientto determine the intrapopulation variability of Rhodiola. Observed heterozygosity at the loci averaged 0.235, compared to the expected 0.249. A dendrogram based on genetic distances was calculated from the results and confirmed that the two populations were genetically diverse. An analysis of molecular variance indicated that species level genetic diversity was relatively high (p = 70%) and an analysis using Shannon’s index showed that within and between genetic diversity in roseroot wasapproximately equal. Nei’s genetic distance and unweighted pair-group method with arithmetic averages cluster analysis showed that the two populations formed three major clusters. Understanding the genetic structure of R.rosea L. will improve the conservation and management of this endangered species.


Genetic diversity, intron-length polymorphism, Rhodiola rosea, roseroot

Article Details


Alm T. Ethiopian of Rhodiola rosea (Crassulaceae) in Norway. Applied Biostatistics, 2010, Inc:321-344.

Poczai P., Hyvonen J. Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects. Mol Biol Rep, 2010, vol. 37 (4), pp. 1897-1912. doi:10.1007/s11033-009-9630-3.

Rose A.B., Beliakoff J.A. Intron-Mediated Enhancement of Gene Expression Independent of Unique Intron Sequences and Splicing. Plant Physiology, 2000,vol. 122 (2), pp. 535-542.

Jeon J-S. et al. Tissue-Preferential Expression of a Rice α-Tubulin Gene, OsTubA1, Mediated by the First Intron. Plant Physiology, 2000,vol. 123 (3), pp. 1005-1014.

Holland J.B. et al. Polymorphism of PCR-based markers targeting exons, introns, promoter regions, and SSRs in maize and introns and repeat sequences in oat. Genome, 2001, vol. 44 (6), pp. 1065-1076.

Gardes M., Bruns T.D. ITS primers with enhanced specificity for basidiomycetes--application to the identification of mycorrhizae and rusts. Mol Ecol, 1993,vol. 2 (2), pp. 113-118.

Bierne N. et al. Screening for intron-length polymorphisms in penaeid shrimps using exon-primed intron-crossing (EPIC)-PCR. Molecular Ecology, 2000,vol. 9 (2), pp. 233-235. doi:10.1046/j.1365-294x.2000.00842.x.

Lessa E.P. Rapid surveying of DNA sequence variation in natural populations. Mol Biol Evol, 1992, vol. 9 (2), pp. 323-330.

Van Camp W et al. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiology, 1996, vol. 112 (4), pp. 1703-1714.

Morsomme P., Boutry M. The plant plasma membrane H(+)-ATPase: structure, function and regulation. Biochim Biophys Acta, 2000,vol. 1465 (1-2), pp. 1-16. doi:10.1016/S0005-2736(00)00128-0.

Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, 1988,vol. 16 (22), pp. 10881-10890.

Kalendar R. et al. FastPCR: An in silico tool for fast primer and probe design and advanced sequence analysis. Genomics.,2017, doi:10.1016/j.ygeno.2017.05.005.

Kalendar R. et al. In Silico PCR Tools for a Fast Primer, Probe, and Advanced Searching. Methods Mol Biol, 2017, vol. 1620, pp. 1-31. doi:10.1007/978-1-4939-7060-5_1.

Kalendar R. et al. Introduction on Using the FastPCR Software and the Related Java Web Tools for PCR and Oligonucleotide Assembly and Analysis. Methods Mol Biol.,2017, vol. 1620, pp. 33-64. doi:10.1007/978-1-4939-7060-5_2.

Nei M. Analysis of Gene Diversity in Subdivided Populations. Proceedings of the National Academy of Sciences of the United States of America,1973,vol.70, (12 Pt 1-2), pp. 3321-3323.

Tamura K., Stecher G., Peterson D. et al. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol., 2013,vol.30, no. 12, pp. 2725-2729.

Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics,2012, vol. 28 (19), pp. 2537-2539. doi:10.1093/bioinformatics/bts460.

Schluter P.M., Harris S.A. Analysis of multilocus fingerprinting data sets containing missing data. Molecular Ecology Notes, 2006,vol. 6 (2), pp. 569-572. doi:10.1111/j.1471-8286.2006.01225.x.

Arif I.A. et al. A Brief Review of Molecular Techniques to Assess Plant Diversity. International Journal of Molecular Sciences,2010, vol. 11 (5), pp. 2079-2096. doi:10.3390/ijms11052079.

Costa R. et al. Comparison of RAPD, ISSR, and AFLP Molecular Markers to Reveal and Classify Orchardgrass (Dactylis glomerata L.) Germplasm Variations. PLoS ONE, 2016,vol. 11 (4), pp. e0152972. doi:10.1371/journal.pone.0152972.

Nilkanta H. et al. ISSR Marker Based Population Genetic Study of Melocanna baccifera (Roxb.) Kurz: A Commercially Important Bamboo of Manipur, North-East India. Scientifica,2017, pp. 3757238. doi:10.1155/2017/3757238.

Shehata A.I. et al. Application of simple sequence repeat (SSR) markers for molecular diversity and heterozygosity analysis in maize inbred lines. Saudi Journal of Biological Sciences,2009, vol. 16 (2), pp. 57-62. doi:10.1016/j.sjbs.2009.10.001.