Silica Nanoparticles for Biomedical Application: Challenges and Opportunities

Main Article Content

Authors

E.A. Mun

National Center for Biotechnology, 13/5, Korgalzhyn road, Nur-Sultan, 010000, Kazakhstan

B.A. Zhaisanbayeva

School of Engineering, Nazarbayev University, 53, Kabanbay Batyr ave., Nur-Sultan, 010000, Kazakhstan

Abstract

Over the past few decades, nanoparticles have been attracting significant attention of researches in chemical, biomedical, pharmaceutical sciences, due to their unique physicochemical properties. This includes ultra small size, large surface area, good biocompatibility and high reactivity. In particular, nanoparticles are promising for pharmaceutical and biomedical fields, as they can be applied as drug carriers and diagnostic tools. Among nanomaterials for biomedical application, silica nanoparticles exhibit great potential due to their straightforward synthesis and separation, low cost, safety, biocompatibility and possibility to further functionalization. Silica nanoparticles have been attractive for pharmaceutical science due to their unique properties, such as tunable size, high surface area and large pore volume, and potential in biomedical application as drug and gene delivery vectors and bioimaging agents. However, some of their properties remain poorly investigated. This short communication discusses the main routes for synthesis of silica nanoparticles, their properties and opportunities for their application in pharmaceutical and biomedical industries, as well as a few challenges in the development of silica-based systems that need to be overcome.

Keywords

silica, nanoparticles, drug delivery, gene delivery, biomedical application

Article Details

References

Zhang L., Gu F.X., Chan J.M., Wang A.Z., Langer R.S., Farokhzad O.C. Nanoparticles in medicine: therapeutic applications and developments. Clinical Pharmacology and Therapeutics, 2008, vol. 83, pp. 761-769. PMID: 17957183.

Thanh N.T.K. and Green L.A.W. Functionalisation of nanoparticles for biomedical applications. Nano Today, 2010, vol. 5, pp. 213-230. Crossref

Jalali N., Moztarzadeh F., Mozafari M., Asgari S., Motevalian M., Alhosseini S.N. Surface modification of poly(lactide-co-glycolide) nanoparticles by d-α-tocopheryl polyethylene glycol 1000 succinate as potential carrier for the delivery of drugs to the brain. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2011, vol. 392, pp. 335-342. Crossref

Canfarotta F., Whitcombe M.J., Piletsky S.A. Polymeric nanoparticles for optical sensing. Biotechnology Advances, 2013, vol. 31, pp. 1585-1599. PMID: 23968893.

Jo J., Aoki I., Tabata Y. Design of iron oxide nanoparticles with different sizes and surface charges for simple and efficient labeling of mesenchymal stem cells. Journal of Controlled Release, 2010, vol. 142, pp. 465-473. Crossref

Fadeel B. and Garcia-Bennett A.E. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Advanced Drug Delivery Reviews, 2010, vol. 62, pp. 362-374. PMID: 19900497.

Jurkić, L. M., Cepanec, I., Pavelić, S. K. & Pavelić, K. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy. Nutrition & Metabolism, 2013, vol. 10, pp. 1-12. Crossref

Bitar A., Ahmad N.M., Fessi H., Elaissari A. Silica-based nanoparticles for biomedical applications. Drug Discovery Today, 2012, vol. 17, pp. 1147-1154. PMID: 22772028

Hu Q., Hampsey J.E., Jiang N., Li C., and Lu Y. Surfactant-templated organic functionalized mesoporous silica with phosphino ligands. Chemistry of Materials, 2005, vol. 17, pp. 1561-1569. Crossref

Ohkubo T., Ogura T., Sakai H., Abe M. Synthesis of highly-ordered mesoporous silica particles using mixed cationic and anionic surfactants as templates. Journal of Colloid and Interface Science, 2007, vol. 312, pp. 42-46. Crossref

Nandiyanto A.B.D., Kim S-G., Iskandar F., Okuyama K. Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters. Microporous and Mesoporous Materials, 2009, vol. 120, pp. 447-453. Crossref

Slowing I.I., Vivero-Escoto J.L., Wu C-W., Lin V.S-Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug Delivery Reviews, 2008, vol. 60, pp. 1278-1288. Crossref.

Stober, W. & Fink, A. Controlled Growth of Monodispersed Silica Spheres in the Micron Size Range. Journal of Colloid and Interface Science, 1968, vol. 26, pp. 62-69. Crossref.

Green D.L., Lin J.S, Lam Y-F., Hu M.Z.-C., Schaefer D.W., and Harris M.T. Size, volume fraction, and nucleation of Stober silica nanoparticles. Journal of Colloid and Interface Science, 2003, vol. 266, pp. 346-358. PMID: 14527458.

Karimi M., Chaudhury I., Jianjun C., Safari M., Sadeghi R., Habibi-Rezaei M., Kokini J. Immobilization of endo-inulinase on non-porous amino functionalized silica nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 2014, vol. 104, pp. 48-55. Crossref.

Takeda Y., Komori Y., Yoshitake H. Direct stober synthesis of monodisperse silica particles functionalized with mercapto-, vinyl- and aminopropylsilanes in alcohol–water mixed solvents. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2013, vol. 422, pp. 68-74. Crossref.

Effati E., Pourabbas B. One-pot synthesis of sub-50 nm vinyl- and acrylate-modified silica nanoparticles. Powder Technology, 2012, vol. 219, pp. 276-283. Crossref.

Nakamura M. and Ishimura K. One-pot synthesis and characterization of three kinds of thiol-organosilica nanoparticles. Langmuir, 2008, vol. 24, pp. 5099-5108. PMID: 18366224.

Doura, T., Tamanoi, F. and Nakamura, M. Miniaturization of thiol-organosilica nanoparticles induced by an anionic surfactant. Journal of Colloid and Interface Science, 2018, vol. 526, pp. 51-62. PMID: 29715615.

Nakamura M. and Ishimura K. Size-controlled, one-pot synthesis, characterization, and biological applications of epoxy-organosilica particles possessing positive zeta potential. Langmuir, 2008, vol. 24, pp. 12228-12234. Crossref

Irmukhametova G.S., Mun G.A., Khutoryanskiy V.V. Thiolated mucoadhesive and PEGylated non-mucoadhesiveorganosilica nanoparticles from 3-mercaptopropyltrimethoxysilane. Langmuir, 2011, vol. 27, pp. 9551-9556. PMID: 21707076.

Mun E.A., Hannell C., Rogers S.E., Hole P., Williams A.C., Khutoryanskiy V.V. On the role of specific interactions in the diffusion of nanoparticles in aqueous polymer solutions. Langmuir, 2014, vol. 30, pp. 308-317. Crossref.

Mun E.A., Morrison P.W.J., Williams A.C., Khutoryanskiy V.V. On the barrier properties of the cornea: a microscopy study of the penetration of fluorescently labeled nanoparticles, polymers and sodium fluorescein. Molecular Pharmaceutics, 2014, vol. 11, pp. 3556-3564. Crossref.

Mansfield, E. D. H., Pandya Y., Mun E.A., Rogers S.E., Abutbul-Ionita I., Danino D., Williams A.C. and Khutoryanskiy V.V. Structure and characterisation of hydroxyethylcellulose-silica nanoparticles. RSC Advances, 2018, vol. 8, pp. 6471-6478. Crossref.

Mun E.A., Williams A.C., Khutoryanskiy V.V. Adhesion of thiolated silica nanoparticles to urinary bladder mucosa: effects of PEGylation, thiol content and particle size. International Journal of Pharmaceutics, 2016, vol. 512, pp. 32-38. Crossref.

Al Mahrooqi, J. H., Mun, E. A., Williams, A. C. & Khutoryanskiy, V. V. Controlling the Size of Thiolated Organosilica Nanoparticles. Langmuir, 2018, vol. 34, pp. 8347-8354. Crossref.

Diab R., Canilho N., Pavel I.A., Haffner F.B., Girardon M., Pasc A. Silica-based systems for oral delivery of drugs, macromolecules and cells. Advances in Colloid and Interface Science, 2017, vol. 249, pp. 346-362. Crossref.

Trewyn, B. G., Slowing, I. I., Chen, H. and Lin, V. S. Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol – Gel Process and Applications in Controlled Release. Accounts of Chemical Research, 2007, vol. 40, pp. 846-853. Crossref.

Vazquez N.I., Gonzalez Z., Ferrari B., Castro Y Synthesis of mesoporous silica nanoparticles by sol-gel as nanocontainer for future drug delivery applications. Ceramica y Vidrio, 2017, vol. 56, pp. 139-145. Crossref.

Karaman, D. Ş. and Kettiger H. Silica-based nanoparticles as drug delivery systems: Chances and challenges. Inorganic Frameworks as Smart Nanomedicines, 2018.Crossref

Tiwari, A. and Tiwari, A. Nanomaterials in Drug Delivery, Imaging, and Tissue Engineering, 2013. Crossref

Van Speybroeck M., Barillaro V., Thi T.D., Mellaerts R., Martens J., Van Humbeeck J., Vermant J., Annaert P., Van den Mooter G., Augustijns P. Ordered Mesoporous Silica Material SBA-15: A Broad-Spectrum Formulation Platform for Poorly Soluble Drugs. Journal of Pharmaceutical Science, 2009, vol. 98, pp. 2648-2658. Crossref

Li J., Du X., Zheng N., Xu L., Xu J., Li S. Contribution of carboxyl modified chiral mesoporous silica nanoparticles in delivering doxorubicin hydrochloride in vitro: pH-response controlled release, enhanced drug cellular uptake and cytotoxicity. Colloids Surfaces B Biointerfaces, 2016, vol. 141, pp. 374-381. Crossref

Velusamy, P., Srinivasa C.M., Kumar G.V., Qurishi Y., Su C., Gopinath S.C.B. A pH stimuli thiol modified mesoporous silica nanoparticles: Doxorubicin carrier for cancer therapy. Journal of the Taiwan Institute of Chemical Engineers, 2018, vol. 87, pp. 264-271. Crossref

Menard M., Meyer F., Parkhomenko K.,Leuvrey C., Francius G., Begin-Colin S., Mertz D. Mesoporous silica templated-albumin nanoparticles with high doxorubicin payload for drug delivery assessed with a 3-D tumor cell model. Biochimica et Biophysica Acta, 2019, vol. 1863, pp. 332-341. Crossref

Nafisi S., Samadi N., Houshiar M., Maibach H.I. Mesoporous silica nanoparticles for enhanced lidocaine skin delivery. International Journal of Pharmaceutics, 2018, vol. 550, pp. 325-332. Crossref

Tao Z., Toms B., Goodisman J., Asefa T. Mesoporous silica microparticles enhance the cytotoxicity of anticancer platinum drugs. ACS Nano, 2010, vol. 4, pp. 789-794. Crossref

Zhou Y., Quan G., Wu Q., Zhang X., Niu B., Wu B., Huang Y., Pan X., Wu C. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharmaceutica Sinica B, 2018, vol. 8, no. 2, pp. 165-177. Crossref.

Cheng C.S., Liu T.P., Chien F.C, Mou C.Y., Wu S.H., Chen Y.P. Codelivery of Plasmid and Curcumin with Mesoporous Silica Nanoparticles for Promoting Neurite Outgrowth. ACS Applied Materials and Interfaces, 2019, vol. 11, pp. 15322-15331. Crossref

Chen M., Wang L., Wang F., Li F., Xia W., Gu H., Chen Y. Quick synthesis of a novel combinatorial delivery system of siRNA and doxorubicin for a synergistic anticancer effect. International Journal of Nanomedicine, 2019, vol. 14, pp. 3557-3569. Crossref

Yang, H., Liu, Y., Qiu, Y., Ding, M. & Zhang, Y. MiRNA-204-5p and oxaliplatin-loaded silica nanoparticles for enhanced tumor suppression effect in CD44-overexpressed colon adenocarcinoma. International Journal of Pharmaceutics, 2019, vol. 566, pp. 585-593. Crossref

Tsai P.H., Wang M.L., Chang J.H., Yarmishyn A.A., Nguyen P.N.N., Chen W., Chien Y., Huo T., Mou C.Y., Chiou S.H. Dual Delivery of HNF4α and Cisplatin by Mesoporous Silica Nanoparticles Inhibits Cancer Pluripotency and Tumorigenicity in Hepatoma-Derived CD133-Expressing Stem Cells. ACS Applied Materials and Interfaces. 2019, vol. 11, pp. 19808-19818. Crossref

Roy I., Ohulchanskyy T.Y., Bharali D.J., Pudavar H.E., Mistretta R.A., Kaur N., Prasad P.N. Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery. Proceedings of the National Academy of Science U.S.A., 2005, vol. 102, pp. 279-284. Crossref

Wang Z., Shao D., Chang Z., Lu M., Wang Y., Yue J., Yang D., Li M., Xu Q., Dong W. Janus Gold Nanoplatform for Synergetic Chemoradiotherapy and Computed Tomography Imaging of Hepatocellular Carcinoma. ACS Nano, 2017, vol. 11, pp. 12732-12741. Crossref

Wu X., Li L., Zhang L., Wang T., Wang C., Su Z. Multifunctional spherical gold nanocluster aggregate@polyacrylic acid@mesoporous silica nanoparticles for combined cancer dual-modal imaging and chemo-therapy. Journal of Materials Chemistry B, 2015, vol. 3, pp. 2421-2425. Crossref

Yu, L., Lin, H., Lu, X. & Chen, Y. Multifunctional Mesoporous Silica Nanoprobes: Material Chemistry–Based Fabrication and Bio‐Imaging Functionality. Advanced Therapeutics, 2018, vol. 1, pp. 1800078 (1-20). Crossref

Vert M., Doi Y., Hellwich K., Hess M., Hodge P., Kubisa P., Rinaudo M., Schue F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 2012, vol. 84, pp. 377-410. Crossref

Niu M., Zhong H., Shao H., Hong D., Ma T., Xu K., Chen X., Han J., Sun J. Shape-Dependent Genotoxicity of Mesoporous Silica Nanoparticles and Cellular Mechanisms. Journal of Nanoscience and Nanotechnology, 2016, vol. 16, pp. 2313-2318. Crossref

Leso V., Fontana, L., Romano, R., Gervetti, P. and Iavicoli, I. Artificial stone associated Silicosis: A systematic review. International Journal of Environmental Research and Public Health, 2019, vol. 16, pp. 1-17. Crossref.

Murugadoss S., Lison D., Godderis L., Van Den Brule S., Mast J., Brassinne F., Sebaihi N., Hoet P.H. Toxicology of silica nanoparticles: an update. Archives Toxicology, 2017, vol. 91, pp. 2967-3010. Crossref

Park J., Jeong H., Hong J., Chang M., Kim M., Chuck R.S., Lee J.K., and Park C. The Effect of Silica Nanoparticles on Human Corneal Epithelial Cells. Scientific Reports, 2016, vol. 6, pp. 1-11. Crossref

Moodley, T. and Singh, M. Polymeric Mesoporous Silica Nanoparticles for Enhanced Delivery of 5-Fluorouracil In Vitro. Pharmaceutics, 2019, vol. 11, pp. 1-21. Crossref