APPLICABILITY OF GENOMIC TECHNOLOGIES FOR IMPROVING IMPORTANT TRAITS IN HORTICULTURAL PERENNIAL CROPS

Main Article Content

Authors

N.A. Ryabushkina

Institute of Plant Biology and Biotechnology, Timiryazev str., 45, Almaty,050040, Kazakhstan

A.S. Pozharskiy

Institute of Plant Biology and Biotechnology, Timiryazev str., 45, Almaty,050040, Kazakhstan

M.Y. Omasheva

Institute of Plant Biology and Biotechnology, Timiryazev str., 45, Almaty,050040, Kazakhstan

Abstract

Horticultural perennial crops are cultivated on one-eighth of global agricultural areas and are significant contributors to world food production. Fruits and berries from such crops are recognized as essential for good nutrition and prevention of numerous diseases. However, developing cultivars that meet modern economic and environmental demands require many breeding cycles and a considerable period. Modern varieties are developed to show high quality and yield, and resistance to pathogens and pests. The recent developments in high-throughput DNA sequencing technologies have been exploited to identify the associations between genes and/or genomic intervals controlling important traits and phenotype. These technologies also enable the development of molecular markers for assisted selection and breeding, the introgression of useful traits from wild relatives such as disease resistance, fruit quality, and rootstock characteristics. Genomic methods provide a valuable approach for the selection of traits of interest in seeds or seedlings and for the improvement of breeding efficiency through marker-assisted selection (MAS) and genome-wide association studies (GWAS). The accurate and cost-effective characterization of large collections of diverse wild germplasms supports such breeding initiatives. Grapevines and apples are among the most economically important of perennial crops and are affected by a large number of pathogens. The monogenic nature of many resistance genes has allowed the identification of homologs in wild relatives and enables the development of molecular markers linked to resistance loci. Thus, genomic approaches in combination with traditional breeding methods offer a promising prospect for improving perennial crops.

Keywords

perennials, crop wild relatives, molecular markers, next generation sequencing, genomics-assisted breeding, disease resistance, grapevine, apple

Article Details

References

Nocker S., Gardiner S.E. Breeding better cultivars, faster: applications of newtechnologies for the rapid deployment of superior horticulturaltree crops. Horticulture Research, 2014, vol.1, Article 14022, 8 pp. doi:10.1038/hortres.2014.22.

Badenes M.L., Fernandez Marti A., Rios G., Rubio-Cabetas M.J. Application of Genomic Technologies to the Breeding of Trees. Frontiers in Genetics, 2016, vol. 7, Article 198.doi: 10.3389/fgene.2016.00198.

Larranaga N. and Hormaza J.I. Advances in genetic diversity analysis in fruit trees crops. In Progress in Botany 77. Edds U. Luttge, F.M. Canovas, R. Mattyssek, 2016, pp. 245-264. doi: 10.1007/978-3-319-25688-7_8.

Migicovsky Z. and Myles S. Exploiting Wild Relatives for Genomics-assisted Breeding of Perennial Crops. Frontiers in Plant Science, 2017, vol. 8, Article 460. doi:10.3389/fpls.2017.00460.

Verde I., Bassil N., Scalabrin S., et al. Development and evaluation of a9KSNParray for peach by internationally coordinated SNP detection and validation inbreeding germplasm. PLoS ONE, 2012, 7:e35668. doi:10.1371/journal.pone.0035668.

Chagne D., Crowhurst R.N., Troggio M., et al. Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS ONE, 2012, 7:e31745. doi:10.1371/journal.pone.0031745.

Li X., Kui L., Zhang J., et al. Improved hybrid de novo genome assembly of domesticated apple (Malus x domestica). GigaScience, 2016, vol. 5:35.doi:10.1186/s13742-016-0139-0.

Bielsa B., Jiwan D., Fernandez Marti A., et al. Detection of SNP and validation of a SFP InDel (deletion) in inverted repeat region of the Prunus species chloroplast genome. Sci.Hortic., 2014,vol. 168, pp. 108-112. doi:10.1016/j.scienta.2014.01.028.

Hill T.A., Ashrafi H., Reyes-Chin-Wo S., et al. Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30Kunigene pepper genechip. PLoS ONE,2013,8:e56200. doi:10.1371/journal.pone.0056200.

Ward J., Bhangoo J., Fernandez-Fernandez F., et al. Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome independent imputation. BMC Genomics, 2013, 14:2.doi:10.1186/1471-2164-14-2.

Gardner K., Brown P.J., Cooke T.F., et al. Fast and cost-effective genetic mapping in apple using next-generation sequencing. G3 (Bethesda), 2014, vol. 4(9), pp.1681-1687. doi: 10.1534/g3.114.011023.

Zhang S., Chen W., Xin L., et al. Genomic variants of genes associated with three horticultural traits in apple revealed by genome re-sequencing. Horticulture Research, 2014, 1:14045. doi:10.1038/hortres.2014.45.

Bai T., Zhu Y., Fernandez-Fernandez F., et al. Fine genetic mapping of the Colocus controlling columnar growth habit in apple. Mol. Genet. Genomics, 2012, vol. 287, pp. 437-450. doi:10.1007/s00438-012-0689-5.

Otto D., Peterson R., Braukseipe B., et al. The columnar mutation (“Cogene”) of apple (Malus domestica) is associated with an integration of a Gypsy-like retrotransposon. Mol. Breed., 2014, vol.33, pp. 863-880. doi: 10.1007/s11032-013-0001-3.

Wolters P.J., Schouten H.J., Velasco R., Si-Ammour A., Baldi P. Evidence f or regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase. New Phytol.,2013, vol. 200, pp. 993-999. doi:10.1111/nph. 12580.

Wang M., Vannozzi A., Wang G., et al. Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family. Horticulture Research, 2014, vol.14016. doi: 10.1038/hortres.2014.16.

Wang Z., Gerstein M., Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet., 2009, vol. 10(1), pp. 57-63. doi:10.1038/nrg2484.

Bai Y.,Dougherty L.,Xu K. Towards an improved apple reference transcriptome using. Mol Genet Genomics, 2014, vol. 289, pp. 427-438.doi: 10.1007/s00438-014-0819-3.

Polesani M., Bortesi L., Ferrarini A., et al. General and species-specific transcriptional responses to downy mildw infection in a susceptible (Vitis vinfera) and a resistant (V. riparia) grapevine species. BMCGenomics, 2010, 11:117. doi: 10.1186/1471-2164-11-117.

Jiao C., Gao M., Wang X., Fei Zh. Transcriptome characterization of three wild Chinese Vitis uncovers a large number of distinct disease related genes. BMC Genomics, 2015, 16:223. doi:10.1186/s12864-015-1442-3.

Rani R., Yadav P., Kalyani M., et al. CRISPR/Cas9: a promising way to exploit genetic variation in plants. Biotechnol. Lett.,2016, vol. 38, pp. 1991-2006. doi:10.1007/s10529-016-2195-z.

WooJ.W.,KimJ.,KwonS.I.,et al.DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins.Nature Biotechnology,2015,vol. 33, pp.1162-1164. doi:10.1038/nbt.3389.

Barba P., Cadle-Davidson L., Harriman J., et al. Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theor Appl Genet., 2014, vol. 127, pp. 73-84. doi: 10.1007/s00122-013-2202-x.

Pessina S., Lenzi L., Perazzolli M., et al. Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine. Horticulture Research, 2016, 3, 16016. doi:10.1038/hortres.2016.16.

Wu J., Wang D., Liu Y., Wang L., et al. Identification of miRNAs involved in pear fruit development and quality. BMC Genomics, 2014, 15:953. doi: 10.1186/1471-2164-15-953.

Myles S., Boyko A.R., Owens C.L. et al. Genetic structure and domestication history of the grape. PNAS, 2011, vol. 108, pp.3530-3535. www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1009363108/-/DCSupplemental.

McClure K.A., Sawler J., Gardner K.M., et al. Genomics: A Potential Panacea for the Perennial Problem. American Journal of Botany, 2014, vol.101, pp.1780-1790. doi: 10.3732/ajb.1400143.

Edge-Garza D.A., Luby J.J., Peace C. Decision support for cost efficient and logistically feasible marker-assisted seedling selection in fruit breeding. Mol. Breed., 2015, 35:223, 15 pp. doi:10.1007/s11032-015-0409-z.

Arruda M.P., Lipka A.E., Brown P.J., et al. Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum L.). Mol Breeding, 2016,36:84. doi: 10.1007/s11032-016-0508-5.

Kumar S., Garrick D., Bink M., Whitworth C., et al. Novel genomic approaches unravel genetic architecture of complex traits in apple. BMC Genomics, 2013,14:393. doi:10.1186/1471-2164-14-393.

Mariette S., Tai W.J.F.,Roch G.,et al. Genome-wide association links candidate genes to resistance to Plum Pox Virus in apricot (Prunus armeniaca). New Phytol., 2016, vol. 209, pp. 773-784. doi: 10.1111/nph.13627.

Armijo G., Schlechter R., Agurto M., et al. Grapevine Pathogenic Microorganisms: Understanding Infection Strategies and Host Response Scenarios. Frontiers in Plant Science | www.frontiersin.orgREVIEW, 2016, 7:382. doi: 10.3389/fpls.2016.00382.

Qiu W., Feechan A., Dry I. Current understanding of grapevine defense mechanismsagainst the biotrophic fungus (Erysiphe necator), the causalagent of powdery mildew disease. Horticulture Research, 2015, vol. 2, 15020. doi:10.1038/hortres.2015.20.

Dodds P.N. and Rathjen J.P. Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 2010, vol. 11, pp. 539-548. doi:10.1371/journal.pone.0143980.

Brumlop S., Reichenbecher W., Tappeser B., Finckh M.R. What is the SMARTest way to breed plants and increase agrobiodiversity? Euphytica, 2013, vol. 194, pp. 53-66.doi: 10.1007/s10681-013-0960-9.

Stin L.T., Fillipenko M. Inheritance of resistance to downy mildew (Plasmopara viticola) and powdery mildew (Uncinula necator) in European-Amur hybrids. Genetics,1974, vol. 10, pp. 37–44. In russian

Yu Y., Zhang Y., Yin L., Lu J.The mode of host resistance to Plasmopara viticola infection of grapevines (Vitis L.).Phytopathology,2012,vol. 102, pp.1094-1101.doi: 10.1094/PHYTO-02-12-0028-R.

Merdinoglu D., Wiedemann-Merdinoglu S., Coste P., Dumas V., Haetty A., Butterlin G., Greif C. Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia.Acta Hort.,2003, vol. 603, pp. 451-456.URL.

Marguerit E., Boury C., Manicki A., et al. Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine.Theor Appl Genet, 2009, vol. 118, pp. 1261-1278. doi: 10.1007/s00122-009-0979-4.

Moreira F.M., Madini A., Marino R., et al. Genetic linkage maps of two interspecific grape crosses (Vitis spp.) used to localize quantitative trait loci for downy mildew resistance.Tree Genetics & Genomes,2011, vol. 7, pp.153-167. doi: 10.1007/s11295-010-0322-x.

Bellin D., Peressotti E., Merdinoglu D., et al. Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localised necrosis at the infection site.Theor Appl Genet., 2009, vol. 120, pp.163-176.doi: 10.1007/s00122-009-1167-2.

Di Gaspero G., Copetti D., Coleman C., et al. Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance.Theor Appl Genet., 2012, vol. 124, pp. 277-286. doi: 10.1007/s00122-011-1703-8.

Schwander F., Eibach R., Fechter I., Hausmann L., Zyprian E., Töpfer R. Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine.Theor Appl Genet., 2012, vol. 124, pp. 163-176. doi: 10.1007/s00122-011-1695-4.

Zyprian E.,Ochßner I.,Schwander F.,et al. Quantitative trait loci affecting pathogenresistanceand ripening of grapevines.Mol Genet Genomics,2016, vol. 291, pp.1573-1594. doi: 10.1007/s00438-016-1200-5.

Blasi P., Blanc S., Wiedemann-Merdinoglu S., et al. Construction of a reference linkage map of Vitis amurensis and genetic mapping of Rpv8, a locus conferring resistance to grapevine downy mildew.Theor Appl Genet., 2011, vol. 123,pp.43-53.

Welter L.J., Gokturk-Baydar N., Akkurt M., et al. Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L).Molecular Breeding,2007, vol. 20, pp. 359-374. doi: 10.1007/s11032-007-9097-7.

Venuti S., Copetti D., Foria S., Falginella L., Hoffmann S., et al. Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties.PLOS ONE, 2013, vol. 8, e61228.doi: 10.1371/journal.pone.0061228.

Barker C.L., Donald T., Pauquet J., et al. Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor Appl Genet., 2005, vol. 111, pp.370-377. doi: 10.1007/s00122-005-2030-8.

Coleman C., Copetti D., Cipriani G., et al. The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines.BMC Genet.,2009, vol. 10:89, 20 p.doi:10.1186/1471-2156-10-89.

Hoffmann S., Di Gaspero G., Kovacs L., et al. Resistance to Erysiphe necator in the grapevine «Kishmish vatkana» is controlled by a single locus through restriction of hyphal growth.Theor Appl Genet., 2008, vol. 116, pp.427-438. doi: 10.1007/s00122-007-0680-4.

Ramming D.W., Gabler F., Smilanick J., et al. A Single Dominant Locus, Ren4, Confers Rapid Non-Race-Specific Resistance to Grapevine Powdery Mildew. Phytopathology, 2011, vol. 101, pp.502-508.doi: 10.1094/PHYTO-09-10-0237.

Blanc S., Wiedemann-Merdinoglu S., Dumas V., Mestre P., Merdinoglu D. A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine powdery mildew. Theor Appl Genet., 2012, vol. 125, pp.1663-1675 doi: 10.1007/s00122-012-1942-3.

Zhang J.,Hausmann L.,Eibach R.,Welter L.J.,Töpfer R.,Zyprian E.M. A framework map from grapevine V3125 (Vitis vinifera 'Schiava grossa' x 'Riesling') x rootstock cultivar 'Börner' (Vitis riparia x Vitis cinerea) to localize genetic determinants of phylloxera root resistance. Theor Appl Genet.,2009, vol.119, pp.1039-1051. doi: 10.1007/s00122-009-1107-1.

Walker M.A., Riaz S., Tenscher A. Optimizing the breeding of Pierce's disease resistant wine grapes with marker-assisted selection. Acta Hortic., 2014, vol.1046, pp.139-143.doi:10.17660/ActaHortic.2014.1046.17.

Gessler C., Pertot I. Vf scab resistance of Malus.Trees,2012, vol.26, pp. 95-108. doi: 10.1007/s00468-011-0618-y.

BastiaanseH.,Bassett H.C., KirkC., et al. Scab resistance in ‘Geneva’ apple is conditioned by a resistance gene cluster with complex genetic control.Molecular Plant Pathology, 2016, vol. 17, pp. 159-172.doi: 10.1111/mpp.12269.

Patzak J., Papršteinand F., Henychova A.Identification of Apple Scab and Powdery Mildew Resistance Genes in Czech Apple (Malusdomestica) Genetic Resources by PCR Molecular Markers. Czech J. Genet. Plant Breed.,2011, vol. 47, pp. 156-165. URL.

Laloi G., Vergne E., Durel C.E., Le Cam B., Caffier V. Efficiency of pyramiding of three quantitative resistance loci to apple scab. Plant Pathology, 2017, vol. 66, pp.412-422.doi:10.1111/ppa.12581.

Baumgartner I.O., Patocchi A., Frey J.E., Peil A., Kellerhals M. Breeding Elite Lines of Apple Carrying Pyramided Homozygous Resistance Genes Against Apple Scab and Resistance Against Powdery Mildew and Fire Blight.Plant Mol Biol Rep.,2015, vol.33, pp.1573-1583.doi: 10.1007/s11105-015-0858-x.

Servin B.,Martin O.C.,Mézard M.,Hospital F. Toward a theory ofmarker-assisted gene pyramiding. Genetics, 2004, vol. 168, pp.513-523.doi:10.1534/genetics.103.023358.

Peil A., Garcia-Libreros T., Richter K., Trognitz F.C., Trognitz B., Hanke M.V., et al. Strong evidence for a fire blight resistance gene of Malus robusta located on linkage group 3 // Plant Breeding. – 2007, vol. 126, рр. 470-475. doi: 10.1111/j.1439-0523.2007.01408.x.

Schouten H.J., Krens F.A., Jacobsen E. Cisgenic plants are similar to traditionally bred plants—International regulations for genetically modified organisms should be altered to exempt cisgenesis.Embo Rep.,2006, vol. 7, pp. 750-753.doi: 10.1038/sj.embor.7400769.

Kost T.D., Gessler C., Jansch M., Flachowsky H., Patocchi A., Broggini G.A.L. Development of the first cisgenic apple with increased resistance to fire blight. PLoS ONE, 2015,vol. 10:e0143980. doi:10.1371/journal.pone.0143980.

Wurdig J., Flachowsky H., Sa A., Peil A., Hanke M-V. Improving resistance of different apple cultivars using the Rvi6 scab resistance gene in a cisgenic approach based on the Flp/FRT recombinase system. Mol Breeding, 2015, vol. 35, pp. 1-18.doi: 10.1007/s11032-015-0291-8.

Bus V.G.M., Bassett H.C.M., Bowatte D., et al. Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated Mildew Immune Selection. Tree Genetics and Genomes, 2010, vol. 6, pp. 477-487.doi: 10.1007/s11295-009-0265-2.

Jensen P.J.,Fazio G.,Altman N.,Praul C.,McNellisT.W. Mapping in an apple (Malus x domestica) F1 segregating population based on physical clustering of differentially expressed genes.BMCGenomics,2014, vol.15:261.doi: 10.1186/1471-2164-15-261.