Main Article Content


E.V. Zholdybayeva

National Center for Biotechnology, 13/5, Korgalzhyn road, Astana,010000, Kazakhstan


Multi-drug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) area major problem in Kazakhstan and, hence,new research initiatives and treatment protocols are urgently required.World-wide, diagnosis of TB is largely reliant on smear microscopy; however,this method has low sensitivity, which can also be further compromised in an endemic HIV setting. Moreover, smear microscopydoes not provide information on drug susceptibility or the genotype of the causative agent. At present, drug susceptibility is mainly tested using culture-based methods.However, the methodology is time-consuming and requires specialized infrastructure, and thus,in many countries,is restricted to large centers and does not always include testing for second-line drug resistance.An alternative approach is the TB-SPRINT assay, which reflects the idea of an “all-in-one” assay that identifies the causative agentand also identifieswith high confidence any mutations conferring resistance. The TB-SPRINT assaycan act as a surveillance tool to monitor the epidemiology of disease in communities and countries. An improved tuberculosis diagnostic assay and improved understanding of risk factors for spread of drug-resistant TB will benefit local populations and will indirectly be very beneficial to the economy of Kazakhstan.


Tuberculosis, MDR-TB, XDR-TB, strains, genotyping, SNP, mutation, TB-SPRINT

Article Details


Global Tuberculosis Report 2015. Geneva, 2015, 204 p.

Global Tuberculosis Report 2013.Geneva, 2013, 306 p.

Aziz M., Ryszewska K., Blanc L., Vincent V., et al.Expanding culture and drug susceptibility testing capacity in tuberculosis diagnostic services: the new challenge.Int J Tuberc Lung Dis., 2007, vol. 13, no. 3, pp.247-250.

Kozhamkulov U., Akhmetova A., Rakhimova S., et al. Molecular characterization of rifampicin- and isoniazid-resistant Mycobacterium tuberculosis strains isolated in Kazakhstan.Jpn J Infect Dis,2011, vol.64, no. 3, pp.253-255.

.Van Kampen S.C., Tursynbayeva A., Koptleuova al. Effect of Introducing Xpert MTB/RIF to Test and Treat Individuals at Risk of Multidrug-Resistant Tuberculosis in Kazakhstan: Prospective Cohort Study.Journal of PLos One, 2015, vol. 10, no. 7.e0132514.Available at: URL.

D. Van Soolingen. Molecular epidemiology of tuberculosis and other mycobacterial infections: main methodologies and achievements. Journal of Internal Medicine, 2011, vol.249, no. 1, pp.1-26.

Molhuizen H.O., Bunschoten A.E., Schouls L.M., van Embden J.D.Rapid Detection and Simultaneous Strain Differentiation of Mycobacterium tuberculosis Complex Bacteria by Spoligotyping. Methods Mol Biol.,1998, vol.101, pp.381-394. 9921492.

Frothingham R., Meeker-O'Connell W.A. Genetic diversity in the Mycobacterium tuberculosiscomplexbased on variablenumbers of tandemDNArepeats. Microbiology, 1998, vol. 144, no. 3, pp.1189-1196.

Dolinger D.L., Colman R.E., Engelthaler D.M., Rodwell T.C. Next-generation sequencing-based user-friendly platforms for drug-resistant tuberculosisdiagnosis: A promise for the near future.Int J Mycobacteriol, 2016, vol. 5, Suppl 1:S27-S28. http://doi: 10.1016/j.ijmyco.2016.09.021.

Jeanes C., O'Grady J.Diagnosing tuberculosisin the 21st century - Dawn of a genomics revolution? Int J Mycobacteriol., 2016, vol. 5, no. 4, pp.384-391. http:// doi: 10.1016/j.ijmyco.2016.11.028.

Kairov U., Kozhamkulov U., Molkenov A., Rakhimova S., et al.Draft Genome Sequences of Two Clinical Isolates of Mycobacterium tuberculosis from Sputum of Kazakh Patients.Genome Announc, 2015, vol.14, no. 3. pii: e00466-15. http://doi: 10.1128/genomeA.00466-15.

Kellar K.L. Applications of multiplexed fluorescent microsphere-based assays to studies of infectious disease. J Clin Ligand Assay, 2003, vol. 26, pp. 76-86.

Dunbar S.A. Applications of LuminexxMAPtechnology for rapid, high-throughputmultiplexednucleicaciddetection. Clin Chim Acta, 2006, vol.363, no. 1-2, pp.71-82.

Christopher-Hennings J., Araujo K.P., Souza C.J., Fang Y., Lawson S., et al. Opportunities for bead-based multiplex assays in veterinary diagnostic laboratories.J Vet Diagn Invest, 2013, vol. 25, no. 6,pp.671-691. http://doi: 10.1177/1040638713507256.

Yan Y., Luo J.Y., Chen Y., Wang H.H., et al.A multiplex liquid-chip assay based on LuminexxMAPtechnologyfor simultaneous detection of six common respiratory viruses.Oncotarget, 2017. http://doi: 10.18632/oncotarget.

Tejera-Alhambra M., Casrouge A., de Andrés C., Seyfferth A., et al.Plasma biomarkers discriminate clinical forms of multiple sclerosis. PLoS One,2015, vol. 3, no. 10(6). http://doi: 10.1371/journal.pone.0128952.

Bergval I., Sengstake S., Brankova N., Levterova V., et al. CombinedSpecies Identification, Genotyping, and Drug ResistanceDetection of Mycobacteriumtuberculosis Cultures by MLPA on a Bead-BasedArray. PLoS One, 2012, vol.7, no. 8, e43240.

Sengstake S., Bablishvili N., Schuitema A., et al. Optimizing multiplex SNP-based data analysis for genotyping of Mycobacteriumtuberculosisisolates. BMC genomics, 2014,vol.15, no. 1, pp.572.

Gomgnimbou M.K., Abadia E., Zhang J., et al. Spoligoriftyping a DPO-based direct-hybridizationassay for TB control on a multianalytemicrobead-basedhybridization system. J Clin Microbiol, 2012, vol.50, no. 120. Gomgnimbou M.K., Hernandez-Neuta I., Panaiotov S., et al. “TB-SPRINT: TUBERCULOSIS-SPOLIGO-RIFAMPIN-ISONIAZID TYPING”; an All-in-One assay technique for surveillance and control of multi-drugresistanttuberculosis on Luminex® devices. J Clin Microbiol, 2013, vol.51, no. 11, pp. 3527-3534.

Gomgnimbou M.K., Ginevra C., Peron-Cane C., Versapuech M.,et al.Validation of a microbead-based format for spoligotyping ofLegionellapneumophila. J Clin. Microbiol., 2014, vol.52, no. 7, pp.2410-2415.

Cowan L.S., Diem L., Brake M.C., Crawford J.T. Transfer of a Mycobacteriumtuberculosisgenotypingmethod, Spoligotyping, from a reverse line-blothybridization, membrane-basedassay to the Luminexmultianalyteprofiling system. J Clin Microbiol,2004, vol.42, no. 1, pp.474-477.

Molhuizen H.O.F., Bunschoten A.E., Schouls L.M., and J.D.A. van Embden.Rapid detection and simultaneous strain differentiation of Mycobacterium tuberculosiscomplex bacteria by spoligotyping.Methods Mol. Biol,1998, vol.101,pp.381-394.

Zhang J., Abadia E., Refregier G., et al. Mycobacteriumtuberculosiscomplex CRISPR genotyping: improvingefficiency, throughput and discriminative power of 'spoligotyping' with new spacers and a microbead-basedhybridizationassay. J Med Microbiol, 2010, vol.59, no. 3, pp.285-294.

Gomgnimbou M.K., Abadia E., Zhang J., et al. "Spoligoriftyping," a dual-priming-oligonucleotide-based direct-hybridization assay for tuberculosis control with a multianalyte microbead-based hybridization system.J ClinMicrobiol, 2012, vol.50, no. 10, pp. 3172-3179. http://doi: 10.1128/JCM.00976-12.

Kapur V., Li L.L., Hamrick M.R., Plikaytis BB, et al. Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch. Pathol. Lab. Med,1995,vol.119, pp. 131-138.

Kapur V., Li L.L., Iordanescu S., Hamrick M.R., et al.Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA polymerase beta subunit in rifampin-resistant Mycobacterium tuberculosis strains from New York City and Texas. J. Clin. Microbiol, 1994,vol.32, pp. 1095-1098.

Moghazeh S.L., Pan X., Arain T., Stover C.K., et al. Comparative antimycobacterial activities of rifampin, rifapentine, and KRM-1648 against a collection of rifampin-resistant Mycobacterium tuberculosis isolates with known rpoBmutations. Antimicrob. Agents Chemother,1996, vol.40, pp. 2655-2657.

Dantas N.G., Suffys P.N., CarvalhoWda S., Gomes H.M., et al. Genetic diversity and molecular epidemiology of multidrug-resistant Mycobacterium tuberculosis in Minas Gerais State, Brazil.BMC Infect Dis, 2015, vol. 1, no. 15, pp.306. http://doi: 10.1186/s12879-015-1057-y.0, pp.3172-3179.