A STUDY OF THE REPAIR ACTIVITY OF THE XTHA AP ENDONUCLEASE FROM HELICOBACTER PYLORI IN MUTANT ESCHERICHIA COLI

Main Article Content

Authors

A.M. Turgimbayeva

National Center for Biotechnology, Korgalzhyn road, 13/5, Astana, 010000, Kazakhstan
L.N. Gumilyov Eurasian National University, Satpayev str., 2, Astana, 010000, Kazakhstan

S.K. Abeldenov

National Center for Biotechnology, Korgalzhyn road, 13/5, Astana, 010000, Kazakhstan

M.K. Saparbayev

Institute of Gustav Roussy, CNRS UMR 8200, 114 Rue Edouard Vaillant, Villejuif, 94805, France

Ye.M. Ramankulov

National Center for Biotechnology, Korgalzhyn road, 13/5, Astana, 010000, Kazakhstan

B.B. Khassenov

National Center for Biotechnology, Korgalzhyn road, 13/5, Astana, 010000, Kazakhstan

Abstract

Oxidized and alkylated DNA damage occurs in the Helicobacter pylori genome during its life, just as it does in the genomes of other pathogens. Reactive oxygen species cause single-stranded DNA breaks, and the alkylation of purine bases leads to the formation of an apurinic/apyrimidinic site (AP site). Base excision repair enzymes, in particular AP endonucleases, play an important role in the removal of cytotoxic oxidized DNA damage and AP sites. H. pylori has a single XthA AP-endonuclease (HpXthA), unlike E. coli, which has two. We aimed to obtain rabbit polyclonal antibodies against HpXthA, and optimize western blot conditions with the obtained antibodies. We carried out a comparative analysis of H. pylori xthA gene expression in the pET-system vectors relative to pBlueScript SK(+). We confirmed that the replacement of an aspartic acid residue with an asparagine residue at position 144 is essential for the enzymatic activity of the HpXthA AP endonuclease. We also showed the importance of the HpXthA AP endonuclease in the survival of cells treated with methyl methanesulfonate and hydrogen peroxide. For this, E. coli xthA-, nfo- double mutants were complemented with the xthA gene from H. pylori. As a result of H. pylori xthA gene expression, E. coli survival increased in the presence of mutagens. In mutant E. coli, the repair of oxidized and methylated DNA bases occurred owing to HpXthA expression, which was confirmed by western blotting with anti-HpXthA antibodies.

Keywords

base excision repair, Helicobacter pylori, AP endonuclease XthA, AP-site, oxidized DNA damage, alkylated DNA damage

Article Details

References

Farr S.B., Kogoma T. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol. Rev., 1991, vol. 55, no 4, pp. 561–585.

Davies K.J.A., Lin S.W. Degradation of oxidatively denatured proteins in Escherichia coli. Free Radic. Biol. Med., 1988, vol. 5, no 4, pp. 215–223.

Demple B., Daikh Y., Greenberg J., Johnson A. Alkylation and oxidative damages to DNA: constitutive and inducible repair systems. Basic Life Sci., 1986, vol. 39, pp. 205–217.

Häring M., Rüdiger H., Demple B., Boiteux S., Epe B. Recognition of oxidized abasic sites by repair endonucleases. Nucleic Acids Res., 1994, vol. 22, no. 11, pp. 2010–2015.

Ljungquist S., Lindahl T., Howard Flanders P. Methyl methane sulfonate sensitive mutant of Escherichia coli deficient in an endonuclease specific for apurinic sites in deoxyribonucleic acid. J. Bacteriol., 1976, vol. 126, no. 2, pp. 646–653.

Cunningham R.P., Saporito S.M., Spitzer S.G., Weiss B. Endonuclease IV (nfo) mutant of Escherichia coli. J. Bacteriol., 1986, vol. 168, no. 3, pp. 1120–1127.

Demple B., Halbrook J., Linn S. Escherichia coli xth mutants are hypersensitive to hydrogen peroxide. J. Bacteriol., 1983, vol. 153, no. 2, pp. 1079–1082.

Yajko D.M., Weiss B. Mutations simultaneously affecting endonuclease II and exonuclease III in Escherichia coli. Proc. Natl. Acad. Sci., 1975, vol. 72, no. 2, pp. 688–692.

Ljungquist S. A new endonuclease from Escherichia coli acting at apurinic sites in DNA. J. Biol. Chem., 1977, vol. 252, no. 9, pp. 2808–2814.

van der Veen S., Tang C.M. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens. Nat. Rev. Microbiol., 2015, vol. 13, no. 2, pp. 83–94.

Tomb J.F., White O., Kerlavage A.R., Clayton R.A., Sutton G.G., Fleischmann R.D., Ketchum K.A., Klenk H.P., Gill S., Dougherty B.A., Nelson K., Quackenbush J., Zhou L., Kirkness E.F., Peterson S., Loftus B., Richardson D., Dodson R., Khalak H.G., Glodek A., McKenney K., Fitzegerald L.M., Lee N., Adams M.D., Hickey E.K., Berg D.E., Gocayne J.D., Utterback T.R., Peterson J.D., Kelley J.M., Cotton M.D., Weidman J.M., Fujii C., Bowman C., Watthey L., Wallin E., Hayes W.S., Borodovsky M., Karp P.D., Smith H.O., Fraser C.M., Venter J.C. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 1997, vol. 388, no. 6642, pp. 539–547.

Alm R.A., Ling L.S., Moir D.T., King B.L., Brown E.D., Doig P.C., Smith D.R., Noonan B., Guild B.C., deJonge B.L., Carmel G., Tummino P.J., Caruso A., Uria-Nickelsen M., Mills D.M., Ives C., Gibson R., Merberg D., Mills S.D., Jiang Q., Taylor D.E., Vovis G.F., Trust T.J. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature, 1999, vol. 397, no. 6715, pp. 176–180.

Mathieu A., O’Rourke E.J., Radicella J.P. Helicobacter pylori genes involved in avoidance of mutations induced by 8-oxoguanine. J. Bacteriol., 2006, vol. 188, no. 21, pp. 7464–7469.

Huang S., Kang J., Blaser M.J. Antimutator role of the DNA glycosylase mutY gene in Helicobacter pylori. J. Bacteriol., 2006, vol. 188, no. 17, pp. 6224–6234.

Turgimbayeva A.M., Abeldenov S.K., Saparbayev M.K., Ramankulov Y.M., Khassenov B.B. Biochemical characterization of XthA AP-endonuclease from Helicobacter pylori. Eurasian J. Appl. Biotechnol., 2018, vol. 2, pp. 26–36.

W Maniatis T.F., Fritsch E.F., Sambrook J. Molecular cloning. A laboratory manual. New York: Cold Spring Harbor Laboratory, 1982, 545 p

Abeldenov S., Khassenov B. Cloning, expression and purification of recombinant analog of Taq DNA polymerase. Biotechnology. Theory and practice, 2014, vol. 1,pp. 12-16.

Turgimbayeva A., Baltabekova M., Yelyubay A., Ibrayeva A., Mussakhmetov A., Abeldenov S., Khassenov B. Preparation of rabbit polyclonal antibodies against GFP and mCherry proteins. Biotechnology. Theory and practice, 2014, vol. 3, pp. 66–71.

Gelin A., Redrejo-Rodríguez M., Laval J., Fedorova O.S., Saparbaev M., Ishchenko A.A. Genetic and biochemical characterization of human AP endonuclease 1 mutants deficient in nucleotide incision repair activity. PLoS One, 2010, vol. 5, no. 8, pp. e12241-.

Tsutakawa S.E., Shin D.S., Mol C.D., Izumi T., Arvai A.S., Mantha A.K., Szczesny B., Ivanov I.N., Hosfield D.J., Maiti B., Pique M.E., Frankel K.A., Hitomi K., Cunningham R.P., Mitra S. T. Conserved structural chemistry for incision activity in structurally non-homologous apurinic/apyrimidinic endonuclease APE1 and endonuclease IV DNA repair enzymes. J. Biol. Chem., 2013. Vol. 288, № 12. P. 8445–8455.

Mol C.D., Izumi T., Mitra S., Tainer J.A. DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination. Nature, 2000, vol. 403, no 6768, pp. 451–456.

Goldman A., Harper S., Speicher D.W. Detection of proteins on blot membranes. Curr. Protoc. Protein Sci., 2016, vol. 2016, pp. 10.8.1-10.8.11.