APPLICATIONS OF THE IMPACT II HIGH RESOLUTION QUADRUPOLE TIME-OF-FLIGHT (QTOF) INSTRUMENT FOR SHOTGUN PROTEOMICS

Main Article Content

Authors

A.T. Kulyyassov

National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan

Ye.M. Ramankulov

National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan

Abstract

Mass spectrometry is a central analytical method for protein research and other biomolecules which also demonstrated capability to detect peptides and proteins in a specific manner. Combined with appropriate sample preparation and/or enrichment, sensitivity is high enough to quantify peptides and proteins. In particular, the detection of iso-forms and different post-translational modifications is of highest interest for clinical applications, including discovery of novel biomarkers for early detection and targeted therapy of cancer and cardiovascular disease. The need to identify, characterize, and quantify proteins at ever increasing sensitivities and in even more complex samples has resulted in the evolution and development of a wide range of new mass spectrometry-based analytical platforms and experimental strategies. Among them, hybrid quadrupole time-of-flight (QToF) mass spectrometers are standard instruments in proteomic laboratories. Here, we discuss the basic concepts of mass spectrometry including performance characteristics, components of tandem mass spectrometer such as quadrupoles, ion traps, ToF mass analyzers, shotgun proteomics methods and bioinformatics analysis. The recent introduction of QToF Impact II Bruker mass spectrometer offers unrivaled mass accuracy (better than 1.45 ppm), high resolving power (40000 at m/z 1222) and a high dynamic range (1.7×105), without the need for a superconducting magnet and its associated maintenance requirements. A comparative analysis of basic performance characteristics of Impact II instrumentation such as resolving power, accuracy, mass range, optimal detection level and dynamic range is also presented in this review.

Keywords

Mass spectrometry (MS), Quadrupole Time-of-Flight (Q-ToF), proteomics, Liquid Chromatography tandem Mass Spectrometry (LC-MS/MS), Sodium DodecylSulfate-PolyAcrylamide Gel Electrophoresis (SDS-PAGE), MultiDimensional Protein Identification Technology (MudPIT), Strong Cation Exchange (SCX), Collision Induced Dissociation (CID), Electron Transfer Dissociation (ETD), Post-Translational Modifications (PTMs), High Performance Liquid Chromatography (HPLC)

Article Details

References

Aebersold R.R., Mann M. Mass spectrometry-based proteomics. Nature, 2003, vol.422, no.6928, pp.198-207. doi:10.1038/nature01511

Domon B. Mass Spectrometry and Protein Analysis. Science, 2006, vol.312, no.5771, pp.212-217. doi:10.1126/science.1124619

Blackstock W.P., Weir M.P. Proteomics: Quantitative and physical mapping of cellular proteins. Trends Biotechnol., 1999, vol.17, no.3, pp.121-127. doi:10.1016/S0167-7799(98)01245-1

Giansanti P., Tsiatsiani L., Low T.Y., Heck A.J.R. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat. Protoc., 2016, vol.11, no.5, pp.993-1006. doi:10.1038/nprot.2016.057

Fenn J., Mann M., Meng C., Shek F., Whitehouse C. Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989, vol.246, no.6, pp.64-71. doi:10.1126/science.2675315

Peng J., Elias J.E., Thoreen C.C., Licklider L.J., Gygi S.P. Evaluation of Multidimensional Chromatography Coupled with Tandem Mass Spectrometry (LC/LC - MS/MS ) for Large-Scale Protein Analysis: The Yeast Proteome research articles. J Proteome Res., 2003, vol.2, no.1, pp.43-50. doi:10.1021/pr025556v

Huang R., Chen Z., He L., et al. Mass spectrometry-assisted gel-based proteomics in cancer biomarker discovery: Approaches and application. Theranostics, 2017, vol.7, no.14, pp.3559-3572. doi:10.7150/THNO.20797

Liu Y., Hüttenhain R., Collins B., Aebersold R. Mass spectrometric protein maps for biomarker discovery and clinical research. Expert Rev Mol Diagn., 2013, vol.13, no.8, pp. 811-825. doi:10.1586/14737159.2013.845089

Hirtz C., Bros P., Brede C., et al. Regulatory context and validation of assays for clinical mass spectrometry proteomics (cMSP) methods. Crit Rev Clin Lab Sci.. 2018, vol.55, no.5, pp.346-358. doi:10.1080/10408363.2018.1470159

Torsetnes S.B., Broughton M.N., Paus E., Halvorsen T.G., Reubsaet L. Determining ProGRP and isoforms in lung and thyroid cancer patient samples: Comparing an MS method with a routine clinical immunoassay. Anal Bioanal Chem., 2014, vol.406, no.11, pp.2733-2738. doi:10.1007/s00216-014-7634-x

Zeidan B.A., Townsend P.A., Garbis S.D., Copson E., Cutress R.I. Clinical proteomics and breast cancer. Surgeon, 2015, vol.13, no.5, pp.271-278. doi:10.1016/j.surge.2014.12.003

Nolen B.M., Lokshin A.E. Biomarker testing for ovarian cancer: Clinical utility of multiplex assays. Mol Diagnosis Ther, 2013, vol.17, no.3, pp.139-146. doi:10.1007/s40291-013-0027-6

Chen K.T., Kim P.D., Jones K.A., et al. Potential prognostic biomarkers of pancreatic cancer. Pancreas, 2014, vol.43, no.1, pp.22-27. doi:10.1097/MPA.0b013e3182a6867e

Ma H., Chen G., Guo M. Mass spectrometry based translational proteomics for biomarker discovery and application in colorectal cancer. Proteomics - Clin Appl., 2016, vol.10, no.4, pp.503-515. doi:10.1002/prca.201500082

Coghlin C., Murray G.I. Progress in the development of protein biomarkers of oesophageal and gastric cancers. Proteomics - Clin Appl., 2016, vol.10, no.4, pp.532-545. doi:10.1002/prca.201500079

Geyer P.E., Holdt L.M., Teupser D., Mann M. Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol., 2017, vol.13, no.9, pp.1-15. doi:10.15252/msb.20156297

Mesaros C., Blair I.A. Mass spectrometry-based approaches to targeted quantitative proteomics in cardiovascular disease. Clin Proteomics, 2016, vol.13, no.1, pp.1-18. doi:10.1186/s12014-016-9121-1

Watson J.T., Sparkman O.D. Introduction to Mass Spectrometry, 2007, 834p. doi:10.1002/9780470516898

Morrison L.J., Wysocki .. Low energy CID and action IRMPD provide insights into a minor subpopulation of the gas-phase conformers of triply charged bradykinin. Int J Mass Spectrom.,2015, vol.391, pp.2-10. doi:10.1016/j.ijms.2015.09.008

Westermeier R., Naven T., Höpker H.R. Proteomics in Practice: A Guide to Successful Experimental Design: Second Edition.; 2008, 482p. doi:10.1002/9783527622290

Douglas D.J. Linear quadrupoles in mass spectrometry. Mass Spectrom Rev., 2009, vol.28, no.6, pp.937-960. doi:10.1002/mas.20249

Hoffmann E. De., Stroobant V. Mass Spectrometry Principles and Applications.; 2007, 489p. doi:10.1002/9783527654703.ch11

Yost R.A., Enke C.G. Instrumentation Triple Quadrupole Mass Spectrometry for Direct Mixture Analysis and Structure Elucidation. Anal Chem., 1979, vol.51, no.12, pp.1251-1264. doi:10.1021/ac50048a792

Konenkov N.V., Sudakov M., Douglas D.J. Matrix methods for the calculation of stability diagrams in quadrupole mass spectrometry, Am Soc Mass Spectrom., 2002, vol.13, no.6, pp.597-613. doi:10.1016/S1044-0305(02)00365-3

Nolting D., Malek R., Makarov A. Ion traps in modern mass spectrometry. Mass Spectrom Rev., 2017, pp.1-19. doi:10.1002/mas.21549

Eliuk S., Makarov A. Evolution of Orbitrap Mass Spectrometry Instrumentation. Annu Rev Anal Chem. 2015, vol.8, no.1, p.61-80. doi:10.1146/annurev-anchem-071114-040325

Boesl U. Time-of-flight mass spectrometry: Introduction to the basics. Mass Spectrom Rev. 2017, vol.36, no.1, pp.86-109. doi:10.1002/mas.21520

Radionova A., Filippov I., Derrick P.J. In pursuit of resolution in time-of-flight mass spectrometry: A historical perspective. Mass Spectrom Rev., 2016, vol.35, no.6, pp.738-757. doi:10.1002/mas.21470

Guilhaus M., Selby D., Mlynski V. Orthogonal acceleration time-of-flight mass spectrometry. Mass Spectrom Rev., 2000, vol.19, no.2, pp. 65-107. doi:10.1002/(SICI)1098-2787(2000)19:2<65::AID-MAS1>3.0.CO;2-E

Chernushevich I. V., Loboda A. V., Thomson B.A. An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom., 2001, vol.36, no.8, pp.849-865. doi:10.1002/jms.207

Pringle S.D., Giles K., Wildgoose J.L., et al. An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole / travelling wave IMS / oa-ToF instrument. Int J Mass Spectrom., 2007, vol.261, pp.1-12. doi:10.1016/j.ijms.2006.07.021

Heck A.J.R., Van Den Heuvel R.H.H. Investigation of intact protein complexes by mass spectrometry. Mass Spectrom Rev., 2004, vol.23, no.5, pp.368-389. doi:10.1002/mas.10081

El-Aneed A., Cohen A., Banoub J. Mass spectrometry, review of the basics: Electrospray, MALDI, and commonly used mass analyzers. Appl Spectrosc Rev., 2009, vol.44, no.3, pp.210-230. doi:10.1080/05704920902717872

Steen H, Mann M. The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol., 2004, vol.5, no.9, pp.699-711. doi:10.1038/nrm1468

Wysocki V.H., Tsaprailis G., Smith L.L., Breci L.A. Mobile and localized protons: A framework for understanding peptide dissociation. J Mass Spectrom., 2000, vol.35, no.12, pp.1399-1406. doi:10.1002/1096-9888(200012)35:12<1399::AID-JMS86>3.0.CO;2-R

Sleno L., Volmer D.A. Ion activation methods for tandem mass spectrometry. J Mass Spectrom., 2004, vol.39, no.10, pp.1091-1112. doi:10.1002/jms.703

Palzs B., Suhal S. Fragmentation pathways of protonated peptides. Mass Spectrom Rev., 2005, vol.24, no.4, pp.508-548. doi:10.1002/mas.20024

Roepstorff P. Mass spectrometry based proteomics, background, status and future needs. Protein Cell., 2012, vol.3, no.9, pp. 641-647. doi:10.1007/s13238-012-2079-5

Standing K.G. Peptide and protein de novo sequencing by mass spectrometry. Curr Opin Struct Biol. 2003, vol. 13, no. 5, pp. 595-601. PMID: 14568614

Aebersold R., Mann M. Mass-spectrometric exploration of proteome structure and function. Nature, 2016, vol.537, no. 7620, pp.347-355. doi:10.1038/nature19949

Wolters D.A., Washburn M.P., Yates J.R. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem., 2001, vol.73, no.23, pp.5683-5690. doi:10.1021/ac010617e

Wang Y., Muneton S., Sjövall J., Jovanovic J.N., Griffiths W.J. The effect of 24S-hydroxycholesterol on cholesterol Homeostasis in neurons: Quantitative changes to the cortical neuron proteome. J Proteome Res., 2008, vol.7, no.4, pp.1606-1614. doi:10.1021/pr7006076

Zhang Y., Zhang Y., Adachi J., et al. MAPU: Max-planck unified database of organellar, cellular, tissue and body fluid proteomes. Nucleic Acids Res., 2007, vol.35(suppl. 1), pp.D771-D779. doi:10.1093/nar/gkl784

Picotti P., Aebersold R., Domon B. The Implications of Proteolytic Background for Shotgun Proteomics. Mol Cell Proteomics, 2007, vol.6, no.9, pp.1589-1598. doi:10.1074/mcp.M700029-MCP200

Perkins D.N., Pappin D.J., Creasy D.M., Cottrell J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 1999, vol.20, no. 18, pp.3551-3567. doi:10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2

Zhang J., Xin L. Shan B., et al. PEAKS DB: De Novo Sequencing Assisted Database Search for Sensitive and Accurate Peptide Identification. Mol Cell Proteomics, 2012, vol.11, no.4, M111.010587. doi:10.1074/mcp.M111.010587

Eng J.K., McCormack A.L., Yates J.R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom., 1994, vol.5, no.11, pp.976-989. doi:10.1016/1044-0305(94)80016-2

Geer L.Y., Markey S.P., Kowalak J.A., et al. Open mass spectrometry search algorithm. J Proteome Res., 2004, vol.3, no.5, pp.958-964. doi:10.1021/pr0499491

Pitzer E., Masselor A., Colinge J. Assessing peptide de novo sequencing algorithms performance on large and diverse data sets. Proteomics, 2007, vol. 7, no.17, pp. 3051-3054. doi:10.1002/pmic.200700224

Ma B. Challenges in Computational Analysis of Mass Spectrometry Data for Proteomics. J Comput Sci Technol., 2010, vol. 25, no.1, pp. 107–123. doi:10.1007/s11390-010-9309-1

Beck S., Michalski A., Raether O., et al. The Impact II, a Very High-Resolution Quadrupole Time-of-Flight Instrument (QTOF) for Deep Shotgun Proteomics. Mol Cell Proteomics. 2015. doi:10.1074/mcp.M114.047407

Shaffer S.A., Prior D.C., Anderson G.A., Udseth H.R., Smith R.D. An Ion Funnel Interface for Improved Ion Focusing and Sensitivity Using Electrospray Ionization Mass Spectrometry. Anal Chem., 1998, vol.70, no.19, pp 4111–4119. doi:10.1021/ac9802170

Kulyyassov A., Shoaib M., Pichugin A., et al. PUB-MS: A mass spectrometry-based method to monitor protein-protein proximity in vivo. J Proteome Res., 2011, vol.10, no.10, pp. 4416-4427. doi:10.1021/pr200189p

March R.E. Quadrupole ion traps. Mass Spectrom Rev., 2009, vol.28, no.6, pp.961-989. doi:10.1002/mas.20250

Bogdanov B., Smith R.D. Proteomics by FT-ICR mass spectrometry: TOP down and bottom up. Mass Spectrom Rev., 2005, vol.24, no.2, pp.168-200. doi:10.1002/mas.20015