CRISPR-CAS SYSTEMS IN PATHOGENIC BACTERIA

Main Article Content

Authors

Z.A. Berdygulova

National Center for Biotechnology, Almaty branch, Zhahanger str., 14, 050054 Almaty

Ye.M. Ramankulov

National Center for Biotechnology, Almaty branch, Zhahanger str., 14, 050054 Almaty

Abstract

Developing preventive measures, diagnosing, and treating diseases caused by bacteria remains a  problem worldwide. Hence, understanding the mechanisms contributing to the virulence and adaptive immune systems of pathogenic bacteria is extremely important. Moreover, Throughout evolution, pathogenic bacteria have developed many protective mechanisms against bacteria-targeting viruses. One such mechanism is the CRISPR-Cas system – a part of the bacterial adaptive immune system. Nowadays, the CRISPR-Cas system is considered the best molecular tool for gene editing in molecular biology applications. Moreover, CRISPR-Cas systems play a role in the virulence of pathogenic bacteria. The variety of these systems is amazing, as is their use in various fields of biology and medicine. In this review, we summarize different types of CRISPR-Cas systems in pathogenic bacteria and discuss the role of CRISPR-Cas in bacterial virulence and its application for biotechnology.

Keywords

CRISPR-Cas, adaptive immune system, pathogenic bacteria, gene editing, virulence, pathogen detection

Article Details

References

Attar N. Bacterial physiology: it’s never too late for CRISPR RNases Nat Rev Microbiol., 2016, vol.14, no.4, pp.192-193.

Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D.A., Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes Science, 2007, vol.315, no. 5819, pp. 1709-12.

Ruud Jansen, Jan. D. A. van Embden, Wim. Gaastra, Leo. M. Schouls Identification of genes that are associated with DNA repeats in prokaryotes Mol Microbiol., 2002, vol.43, pp.1565-1575.

Erik J. Sontheimer, Rodolphe Barrangou. The Bacterial Origins of the CRISPR Genome-Editing Revolution. Human Gene Therapy, 2015, vol.25, pp.413-424.

Marraffini L.A., Sontheimer E.J. CRISPR interference limits horizontal gene transfer in Staphylococci by targeting DNA Science, 2008, vol. 322, no. 5909, pp.1843-5. doi:10.1126/science.1165771.

Hatoum-Aslan A., Marraffini L.A. Impact of CRISPR immunity on the emergence and virulence of bacterial pathogens Curr Opin Microbiol., 2014, vol.17, pp.82–90. doi:10.1016/j.mib.2013.12.001.

Ishino Y., Krupovic M., Forterre P. History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology J Bacteriol., 2018, vol.200, no.7, pp.00580-17. doi: 10.1128/JB.00580-17

Wijshake T., Baker D.J., van de Sluis B. Biochim Endonucleases: new tools to edit the mouse genome Bioph. Acta., 2014, vol.1842, no.10, pp.1942-1950.

Garneau J.E., Dupuis M.E., Villion M., Romero D.A., Barrangou R., Boyaval P., Fremaux C., Horvath P., Magadan A.H., Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA Nature., 2018, vol.468, pp.67-71.

Horvath P., Barrangou R. CRISPR/Cas, the Immune System of Bacteria and Archaea Science., 2010, vol.327, no. 5962, pp.167–170. doi:10.1126/ science.1179555

Makarova K.S., Koonin E.V. Annotation and Classification of CRISPR-Cas Systems Methods Mol Biol., 2015, vol.1311, pp.47–75. doi: 10.1007/978-1-4939-2687-94

Khambhati K., Bhattacharjee G., Singh V. Current progress in CRISPR-based diagnostic platforms J Cell Biochem., 2019, vol.120, no.3, pp.2721–2725. doi:0.1002/jcb.27690.

Louwen R., Raymond H. J. Staals, Hubert P. Endtz, Peter van Baarlen, John van der Oostb. The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol Mol Biol Rev., 2014, vol.78, no.1, pp.74–88. doi: 10.1128/MMBR.00039-13

Sampson T.R., Saroj S.D., Llewellyn A.C., Tzeng Y.L., Weiss D.S. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature., 2013, vol. 497, no. 7448, pp. 254-257.

Louwen R., Horst-Kreft D., de Boer A.G., van der Graaf L, de Knegt G., Hamersma M., Heikema A.P., Timms A.R., Jacobs B.C., Wagenaar J.A., Endtz H.P., van der Oost J., Wells J.M., Nieuwenhuis E.E., van Vliet A.H., Willemsen P.T., van Baarlen P., van Belkum A. A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barré syndrome. Eur J Clin Microbiol Infect Dis., 2013, vol. 32, no.2, pp. 207-226.

Koonin E.V. Diversity, classification and evolution of CRISPR- Cas systems Curr Opin Microbiol., 2017, vol.37, pp.67–78. doi:10.1016/j.mib.2017.05.008

Smirnov A.V., Yunusova A.M., Lukyanchikova V.A., Battulin N.R. CRISPR/Cas9, a universal tool for genomic engineering. Vavilov Journal of Genetics and Breeding., 2016, vol.20, no.4, pp.493-510. doi: 10.18699/VJ16.175

Hille F., Richter H., Shi Pey Wong, Bratovic M., Ressel S., Charpentier E. The Biology of CRISPR-Cas: Backward and Forward. Cell., 2018, vol.172, no.6, pp.1239–1259. doi: 10.1016/j.cell.2017.11.032

Makarova K.S., Haft D.H., Barrangou R., Brouns S.J., Charpentier E., Horvath P., Moineau S., Mojica F.J., Wolf Y.I., Yakunin A.F., van der Oost J, Koonin E.V. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol., 2011, vol. 9, no.6, pp.467-77.

Omar O. Abudayyeh, Jonathan S. Gootenberg, Silvana Konermann, Julia Joung, Ian M. Slaymaker. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science., 2016, vol.353, pp.5573

Jeffrey R. Strich and Daniel S. Chertow. CRISPR-Cas Biology and Infectious Diseases Applications. J. Clin. Microbiol., 2018, doi:10.1128/JCM.01307-18.

Brouns S.J., Jore M.M., Lundgren M., Westra E.R., Slijkhuis R.J., Snijders A.P., Dickman M.J., Makarova K.S., Koonin E.V., van der Oost J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 2008, vol.321, no.960, pp.4.

Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agar¬wala V., Li Y., Fine E.J., Wu X., Shalem O., Cradick T.J., Marraffi¬ni L.A., Bao G., Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol., 2013, vol. 31, no.9, pp.827-832.

Xiao Y., Luo M., Hayes R.P., Kim J., Ng S., Ding F., Liao M., Ke A. Structure basis for directional R-loop formation and substrate handover mechanisms in type I CRISPR Cas System. Cell, 2017, vol.170, no. 48, pp.60

Hille F., Richter H., Shi Pey Wong, Bratovic M., Ressel S., Charpentier E. The biology of CRISPR-Cas: backward and forward. Cell, 2018, vol.172, no.6, pp.1239–1259. doi: 10.1016/j.cell.2017.11.032

Shmakov S., Abudayyeh O.O., Makarova K.S., Wolf Y.I., Gootenberg J.S., Semenova E., Minakhin L., Joung J., Konermann S., Severinov K., Zhang F., Koonin E.V. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell., 2015, vol.60, no.385, pp.97.

Haft D.H., Selengut J., Mongodin E.F., Nelson K.E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol., 2000, vol.1, no.6, pp.60.

Smirnov A.V., Yunusova A.M., Lukyanchikova V.A., Battulin N.R. CRISPR/Cas9, a universal tool for genomic engineering. Vavilov Journal of Genetics and Breeding., 2016, vol.20, no.4, pp.493-510. doi:10.18699/VJ16.175

Deltcheva E., Chylinski K., Sharma C.M., Gonzales K., Chao Y., Pirzada Z.A., Eckert M.R., Vogel J., Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, vol.471, pp.602-607.

Wright A.V., Nunez J.K., Doudna J.A. Review biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engi¬neering. Cell, 2016, vol. 64, no.1-2, pp.29–44.

de Barsy M., Bertelli C., Jacquier N., Kebbi-Beghdadi C., Greub G. ESCCAR international congress on Rickettsia and other intracellular bacteria. Microbes Infect., 2015, vol., pp. 680-688. doi: 10.1016/j.micinf.2015.07.002

Grissa I., Vergnaud G., Pourcel C.CRISPR Finder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res., 2007, vol.35, pp.52–57.

Domman D. Massive expansion of ubiquitination-related gene families within the Chlamydiae. Mol Biol Evol., 2014, vol.31, pp.2890–2904. doi: 10.1093/molbev/msu227

Bertelli C., Cissé OH, Rusconi B, Kebbi-Beghdadi C, Croxatto A, Goesmann A, Collyn F, Greub G. CRISPR System Acquisition and Evolution of an Obligate Intracellular Chlamydia-Related Bacterium. Genome Biol Evol., 2016, vol.8., no.8, pp. 2376-86. doi: 10.1093/gbe/evw138.

Xingliang Ma, Qinlong Zhu, Yuanling Chen, Yao-Guang Liu. CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Molecular Plant., 2016, vol.9, pp.961-974.

Ebina H., Misawa N., Kanemura Y., Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci. Rep., 2013, vol.3, pp. 2510.

Muller V., Rajer F., Frykholm K., Nyberg L.K., Quaderi S., Fritzsche J., Kristiansson E., Ambjornsson T., Sandegren L., Westerlund F. Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping. Sci Rep., 2016, vol.6, pp.37938

Gootenberg J.S., Abudayyeh O.O., Kellner M.J., Joung J., Collins J.J., Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 2018, vol.360, no.6387, pp.439‐444.

Myhrvold C., Freije C.A., Gootenberg J.S. Field-deployable viral diagnostics using CRISPR-Cas13. Science, 2018, vol.60, no. 6387, pp. 444-448.

Guk K., Keem J.O., Hwang S.G., Kim H., Kang T., Lim E.K., Jung J. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody like dCas9/sgRNA complex. Biosens Bioelectron., 2017, vol. 95, pp.67-71.

Edze R. Westra, Angus Buckling, Peter C. Fineran. CRISPR–Cas systems: beyond adaptive immunity. Nat Rev Micro., 2014, vol.12, pp.317-326.

Sampson T.R., Saroj S.D., Llewellyn A.C., Tzeng Y.L., Weiss D.S. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature, 2013, vol. 497, no. 7448, pp.254-257. URL